![]() |
![]() |
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
Agricultural biotechnology and the production of GM crops have been controversial despite being practiced in both developed and developing countries, the major reason being their potential negative impact on human / animal health or environment. Also prevalent is the view that it is simply unethical to engineer different forms of life in the laboratory, especially when it comes to consuming food generated through genetic engineering. GM crops have been introduced into the agricultural landscape more than 2 decades ago which has allowed us to study their effects on economy, health and the environment. Agricultural Biotechnology: Genetic Engineering for a Food Cause is a compendium of information, practices, observations and discernible insights on agriculture, biotechnology and sustainable development. The book begins by descriptions of genetic engineering practices and strategies for producing GM crops, their importance in the food chain and advantages of GM crops over non-modified crops. Followed by chapters on the strategic genetic applications and the use of synthetics microbiology and microbial symbiosis, Agricultural Biotechnology: Genetic Engineering concludes with an insight of the Future of microbiotechnology in agricultural practices. Agricultural Biotechnology: Genetic Engineering for a Food Cause fills a gap by summarizing the available literature in a wide variety of topics under one single volume, being accessible to audiences in academic, government and industry spaces.
Electron cryomicroscopy is a form of transmission electron microscopy (EM) in which the sample is studied at cryogenic temperatures (generally liquid nitrogen temperatures). Cryo-EM is developing popularity in structural biology. This volume from the Advances in Protein Chemistry and Structural Biology series is Part B and covers essential topics.
Structural genomics is the systematic determination of 3-D
structures of proteins representative of the range of protein
structure and function found in nature. The goal is to build a body
of structural information that will predict the structure and
potential function for almost any protein from knowledge of its
coding sequence. This is essential information for understanding
the functioning of the human proteome, the ensemble of tens of
thousands of proteins specified by the human genome.
|
![]() ![]() You may like...
|