Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
The abiotic stresses like drought, temperature, cold, salinity, heavy metals etc. affect a great deal on the yield performance of the agricultural crops. To cope up with these challenges, plant breeding programs world-wide are focussing on the development of stress tolerant varieties in all crop species. Significant genomic advances have been made for abiotic stress tolerance in various crop species in terms of availability of molecular markers, QTL mapping, genome-wide association studies (GWAS), genomic selection (GS) strategies, and transcriptome profiling. The broad-range of articles involving genomics and breeding approaches deepens our existing knowledge about complex traits. The chapters are written by authorities in their respective fields. This book provides comprehensive and consolidated account on the applications of the most recent findings and the progress made in genomics assisted breeding for tolerance to abiotic stresses in many important major crop species with a focus on applications of modern strategies for sustainable agriculture. The book is especially intended for students, molecular breeders and scientists working on the genomics-assisted genetic improvement of crop species for abiotic stress tolerance.
Abiotic stresses such as drought (water deficit), extreme temperatures (cold, frost and heat), salinity (sodicity) and mineral (metal and metalloid) toxicity limit productivity of crop plants worldwide and are big threats to global food security. With worsening climate change scenarios, these stresses will further increase in intensity and frequency. Improving tolerance to abiotic stresses, therefore, has become a major objective in crop breeding programs. A lot of research has been conducted on the regulatory mechanisms, signaling pathways governing these abiotic stresses, and cross talk among them in various model and non-model species. Also, various 'omics' platforms have been utilized to unravel the candidate genes underpinning various abiotic stresses, which have increased our understanding of the tolerance mechanisms at structural, physiological, transcriptional and molecular level. Further, a wealth of information has been generated on the role of chromatin assembly and its remodeling under stress and on the epigenetic dynamics via histones modifications. The book consolidates outlooks, perspectives and updates on the research conducted by scientists in the abovementioned areas. The information covered in this book will therefore interest workers in all areas of plant sciences. The results presented on multiple crops will be useful to scientists in building strategies to counter these stresses in plants. In addition, students who are beginners in the areas of abiotic stress tolerance will find this book handy to clear their concepts and to get an update on the research conducted in various crops at one place
This edited volume provides comprehensive and latest information on the fungal biodiversity in its morphological characters, bioactive molecules, pathogenicity and virulence, and its impacts on crop production and sustainable management of agricultural productivity towards resolving global food security issues. The increasing number of infectious fungal diseases are regarded as threats to agricultural productivity and global food security. The efforts done by scientists to inventories the fungal diversity and identification of fungal species contributing as pathogens towards many plant and human diseases have been compiled in the present volume. The identification of the potential fungal pathogens is a prerequisite for an effective disease control management program. Also important is to understand the complex interactions between the host-pathogen and the environment. The book dwells on insights on the aforementioned aspects. The book also includes articles on ecological significance of fungi and fungal antagonists used as biocontrol agents on other pathogens. This compilation is useful to scientists working in similar areas as well as to undergraduate and graduate students keen on getting updated information on the subject. Scientists involved in agricultural research, crop management, and industries that manufacture agrochemicals may also find it useful read.
|
You may like...
|