Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
The anaerobic process is considered to be a sustainable technology for organic waste treatment mainly due to its lower energy consumption and production of residual solids coupled with the prospect of energy recovery from the biogas generated. However, the anaerobic process cannot be seen as providing the 'complete' solution as its treated effluents would typically not meet the desired discharge limits in terms of residual carbon, nutrients and pathogens. This has given impetus to subsequent post treatment in order to meet the environmental legislations and protect the receiving water bodies and environment. This book discusses anaerobic treatment from the perspective of organic wastes and wastewaters (municipal and industrial) followed by various post-treatment options for anaerobic effluent polishing and resource recovery. Coverage will also be from the perspective of future trends and thoughts on anaerobic technologies being able to support meeting the increasingly stringent disposal standards. The resource recovery angle is particularly interesting as this can arguably help achieve the circular economy. It is intended the information can be used to identify appropriate solutions for anaerobic effluent treatment and possible alternative approaches to the commonly applied post-treatment techniques. The succeeding discussion is intended to lead on to identification of opportunities for further research and development. This book can be used as a standard reference book and textbook in universities for Master and Doctoral students. The academic community relevant to the subject, namely faculty, researchers, scientists, and practicing engineers, will find the book both informative and as a useful source of successful case studies.
Clean Energy and Resources Recovery: Biomass Waste Based Biorefineries, Volume One presents the technological options for energy and resources recovery from all types of organic wastes. The book addresses municipal and industrial sludges, municipal solid waste, agro-residue, animal wastes, industrial waste, forestry residue, and algal biomass, and provides a global overview of biomass waste production, waste handling issues and related GHG emissions and climate change, legislative waste management guidelines, biomass composition, and conventional methods for biomass waste treatment. For each biomass waste, chapters cover energy and bio-based products recovery, pre-treatment methods, process microbiology, community dynamics, co-digestion, reactor design and configuration, and techno-economic evaluation. Case studies on upscaling technology and pilot and industry scale implementation are included, alongside step-by-step calculations that integrate practical field data and regulatory requirements into the environmental design process. Finally, future trends and developments in advanced biotechnological concepts for biomass waste processing and management are also discussed.
The book aims to analyse and discuss the conventional and emerging treatments of digestate generated in the anaerobic treatment of organic waste. Thus, in the circular economy framework, the book will address up-to-date strategies for the treatment and resource recovery from anaerobic digestate. Anaerobic digestion is an expanding technology nowadays, especially when considering the thrust in ongoing research on the value-added products and energy recovery from biomass wastes, i.e., sludges, agro-industrial waste, animal waste, food waste and organic fraction of municipal solid waste, etc. Anaerobic digestate is a leftover and waste management authorities across the world do not have so many options for digestate management except using the digestate for land application as a fertilizer or composting. However, researchers and field engineers are still looking for robust options for digestate management. Thus, a timely book on digestate management will be an invaluable addition to this domain. The key features of the book include: the broad range of biomass waste covered, discussion of conventional to advanced technological options, and the inclusion of successful case studies.
Sludge Management provides up-to-date information on sludge treatment, reuse and disposal. A comprehensive coverage of all issues related to sludge management is included with local through global coverage of all sludge management practices. Conventional to advanced technologies for sludge management with available case studies from both developing and developed countries are covered in this book. Given the responsibility of engineers to develop the technological tools to meet the increasingly stricter standards for sludge treatment and disposal, the main attraction of the book principally relies on its technical content that reviews all the points to be considered in sludge management from engineering and technological perspectives. Sludge Management can be used for planning, designing, and implementing waste sludge management projects. Moreover, this book can be used as a standard textbook in Universities for Master and Doctoral students. Also, academics, researchers, scientists, and practicing engineers working in the field of sludge management would find the book very informative and a source of interesting case studies.
Sludge Management provides up-to-date information on sludge treatment, reuse and disposal. A comprehensive coverage of all issues related to sludge management is included with local through global coverage of all sludge management practices. Conventional to advanced technologies for sludge management with available case studies from both developing and developed countries are covered in this book. Given the responsibility of engineers to develop the technological tools to meet the increasingly stricter standards for sludge treatment and disposal, the main attraction of the book principally relies on its technical content that reviews all the points to be considered in sludge management from engineering and technological perspectives. Sludge Management can be used for planning, designing, and implementing waste sludge management projects. Moreover, this book can be used as a standard textbook in Universities for Master and Doctoral students. Also, academics, researchers, scientists, and practicing engineers working in the field of sludge management would find the book very informative and a source of interesting case studies.
Sustainable Treatment Technologies for Pre- and Poly-flourakyl Substances provides comprehensive details about per- and poly-fluroalkyls substances (PFASs), which are highly toxic and bio-accumulative substances that do not biodegrade easily or cannot be neutralized under normal environmental conditions. It discusses their occurrence in water, wastewater, and aquatic environment, their bioaccumulation in plants, environmental impacts and various remedial technologies for their treatment and management. All the chapters provide state-of-art information about PFASs, describing their identification methods, characterization and present critical analysis of the treatment methods such as physical, chemical, biological, hybrid and advanced systems. This book is a ready reference for the environmental engineers, municipal engineers, environmental practitioners, policy makers, and planners; it is also a practical guide for industrial engineers, government bodies and ecologists as well as for researchers.
Clean Energy and Resource Recovery: Wastewater Treatment Plants as Bio-refineries, Volume 2, summarizes the fundamentals of various treatment modes applied to the recovery of energy and value-added products from wastewater treatment plants. The book addresses the production of biofuel, heat, and electricity, chemicals, feed, and other products from municipal wastewater, industrial wastewater, and sludge. It intends to provide the readers an account of up-to-date information on the recovery of biofuels and other value-added products using conventional and advanced technological developments. The book starts with identifying the key problems of the sectors and then provides solutions to them with step-by-step guidance on the implementation of processes and procedures. Titles compiled in this book further explore related issues like the safe disposal of leftovers, from a local to global scale. Finally, the book sheds light on how wastewater treatment facilities reduce stress on energy systems, decrease air and water pollution, build resiliency, and drive local economic activity. As a compliment to Volume 1: Biomass Waste Based Biorefineries, Clean Energy and Resource Recovery, Volume 2: Wastewater Treatment Plants as Bio-refineries is a comprehensive reference on all aspects of energy and resource recovery from wastewater. The book is going to be a handy reference tool for energy researchers, environmental scientists, and civil, chemical, and municipal engineers interested in waste-to-energy.
|
You may like...
|