Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 25 of 26 matches in All Departments
By presenting the latest advances in fuzzy sets and computing with words from around the globe, this book disseminates recent innovations in advanced intelligent technologies and systems. From intelligent control and intuitionistic fuzzy quantifiers to various data science and industrial applications, it includes a wide range of valuable lessons learned and ideas for future intelligent products and systems.
"Semantic Analysis and Understanding of Human Behaviour in Video
Streaming "investigates the semantic analysis of the human
behaviour captured by video streaming, and introduces both
theoretical and technological points of view. Video analysis based
on the semantic content is in fact still an open issue for the
computer vision research community, especially when real-time
analysis of complex scenes is concerned."
This book examines the context, motivation and current status of biometric systems based on the palmprint, with a specific focus on touchless and less-constrained systems. It covers new technologies in this rapidly evolving field and is one of the first comprehensive books on palmprint recognition systems. It discusses the research literature and the most relevant industrial applications of palmprint biometrics, including the low-cost solutions based on webcams. The steps of biometric recognition are described in detail, including acquisition setups, algorithms, and evaluation procedures. Constraints and limitations of current palmprint recognition systems are analyzed and discussed. The authors also introduce innovative methods for touchless and less-constrained palmprint recognition, with the aim to make palmprint biometrics easier to use in practical, daily-life applications, and overcome the typical constraints and limitations described. Touchless Palmprint Recognition Systems targets professionals and researchers working in biometrics, image processing and three-dimensional reconstruction. Advanced-level students studying biometrics and computer science will also find this material valuable as a secondary text book or reference.
"3D Surface Reconstruction: Multi-Scale Hierarchical Approaches "presents methods to model 3D objects in an incremental way so as to capture more finer details at each step. The configuration of the model parameters, the rationale and solutions are described and discussed in detail so the reader has a strong understanding of the methodology. Modeling starts from data captured by 3D digitizers and makes the process even more clear and engaging. Innovative approaches, based on two popular machine learning paradigms, namely Radial Basis Functions and the Support Vector Machines, are also introduced. These paradigms are innovatively extended to a multi-scale incremental structure, based on a hierarchical scheme. The resulting approaches allow readers to achieve high accuracy with limited computational complexity, and makes the approaches appropriate for online, real-time operation. Applications can be found in any domain in which regression is required. "3D Surface Reconstruction: Multi-Scale Hierarchical Approaches" is designed as a secondary text book or reference for advanced-level students and researchers in computer science. This book also targets practitioners working in computer vision or machine learning related fields.
This book provides a valuable combination of relevant research works on developing smart city ecosystem from the artificial intelligence (AI) and Internet of things (IoT) perspective. The technical research works presented here are focused on a number of aspects of smart cities: smart mobility, smart living, smart environment, smart citizens, smart government, and smart waste management systems as well as related technologies and concepts. This edited book offers critical insight to the key underlying research themes within smart cities, highlighting the limitations of current developments and potential future directions.
This book features selected papers presented at Third International Conference on International Conference on Information Management and Machine Intelligence (ICIMMI 2021) held at Poornima Institute of Engineering & Technology, Jaipur, Rajasthan, India during 23 - 24 December 2021. It covers a range of topics, including data analytics; AI; machine and deep learning; information management, security, processing techniques and interpretation; applications of artificial intelligence in soft computing and pattern recognition; cloud-based applications for machine learning; application of IoT in power distribution systems; as well as wireless sensor networks and adaptive wireless communication.
Offering the first comprehensive analysis of touchless fingerprint-recognition technologies, Touchless Fingerprint Biometrics gives an overview of the state of the art and describes relevant industrial applications. It also presents new techniques to efficiently and effectively implement advanced solutions based on touchless fingerprinting. The most accurate current biometric technologies in touch-based fingerprint-recognition systems require a relatively high level of user cooperation to acquire samples of the concerned biometric trait. With the potential for reduced constraints, reduced hardware costs, quicker acquisition time, wider usability, and increased user acceptability, this book argues for the potential superiority of touchless biometrics over touch-based methods. The book considers current problems in developing high-accuracy touchless recognition technology. It discusses factors such as shadows, reflections, complex backgrounds, distortions due to perspective effects, uncontrolled finger placement, inconstant resolution of the ridge pattern, and reconstruction and processing of three-dimensional models. The last section suggests what future work can be done to increase accuracy in touchless systems, such as intensive studies on extraction and matching methods and three-dimensional analytical capabilities within systems. In a world where usability and mobility have increasing relevance, Touchless Fingerprint Biometrics demonstrates that touchless technologies are also part of the future. A presentation of the state of the art, it introduces you to the field and its immediate future directions.
This book discusses the future possibilities of AI with cloud computing and edge computing. The main goal of this book is to conduct analyses, implementation and discussion of many tools (of artificial intelligence, machine learning and deep learning and cloud computing, fog computing, and edge computing including concepts of cyber security) for understanding integration of these technologies. With this book, readers can quickly get an overview of these emerging topics and get many ideas of the future of AI with cloud, edge, and in many other areas. Topics include machine and deep learning techniques for Internet of Things based cloud systems; security, privacy and trust issues in AI based cloud and IoT based cloud systems; AI for smart data storage in cloud-based IoT; blockchain based solutions for AI based cloud and IoT based cloud systems.This book is relevent to researchers, academics, students, and professionals.
This book features selected papers presented at Third International Conference on International Conference on Information Management and Machine Intelligence (ICIMMI 2021) held at Poornima Institute of Engineering & Technology, Jaipur, Rajasthan, India during 23 – 24 December 2021. It covers a range of topics, including data analytics; AI; machine and deep learning; information management, security, processing techniques and interpretation; applications of artificial intelligence in soft computing and pattern recognition; cloud-based applications for machine learning; application of IoT in power distribution systems; as well as wireless sensor networks and adaptive wireless communication.
Offering the first comprehensive analysis of touchless fingerprint-recognition technologies, Touchless Fingerprint Biometrics gives an overview of the state of the art and describes relevant industrial applications. It also presents new techniques to efficiently and effectively implement advanced solutions based on touchless fingerprinting. The most accurate current biometric technologies in touch-based fingerprint-recognition systems require a relatively high level of user cooperation to acquire samples of the concerned biometric trait. With the potential for reduced constraints, reduced hardware costs, quicker acquisition time, wider usability, and increased user acceptability, this book argues for the potential superiority of touchless biometrics over touch-based methods. The book considers current problems in developing high-accuracy touchless recognition technology. It discusses factors such as shadows, reflections, complex backgrounds, distortions due to perspective effects, uncontrolled finger placement, inconstant resolution of the ridge pattern, and reconstruction and processing of three-dimensional models. The last section suggests what future work can be done to increase accuracy in touchless systems, such as intensive studies on extraction and matching methods and three-dimensional analytical capabilities within systems. In a world where usability and mobility have increasing relevance, Touchless Fingerprint Biometrics demonstrates that touchless technologies are also part of the future. A presentation of the state of the art, it introduces you to the field and its immediate future directions.
This book discusses the recent research trends and upcoming applications based on artificial intelligence. It includes best selected research papers presented at the International Conference on Research and Applications in Artificial Intelligence (RAAI 2020), organized by Department of Information Technology, RCC Institute of Information technology, Kolkata, West Bengal, India during 19 - 20, December, 2020. Many versatile fields of artificial intelligence are categorically addressed through different chapters of this book. The book is a valuable resource and reference for researchers, instructors, students, scientists, engineers, managers and industry practitioners in these important areas.
This book features selected papers presented at Second International Conference on International Conference on Information Management & Machine Intelligence (ICIMMI 2020) held at Poornima Institute of Engineering & Technology, Jaipur, Rajasthan, India during 24 - 25 July 2020. It covers a range of topics, including data analytics; AI; machine and deep learning; information management, security, processing techniques and interpretation; applications of artificial intelligence in soft computing and pattern recognition; cloud-based applications for machine learning; application of IoT in power distribution systems; as well as wireless sensor networks and adaptive wireless communication.
The book features selected high-quality papers presented in International Conference on Computing, Power and Communication Technologies 2019 (GUCON 2019), organized by Galgotias University, India, in September 2019. Discussing in detail topics related to electronics devices, circuits and systems; signal processing; and bioinformatics, multimedia and machine learning, the papers in this book provide interesting reading for researchers, engineers, and students.
This book presents the latest research on computational approaches to learning. It includes high-quality peer-reviewed papers from the "Intelligent and Interactive Computing Conference (IIC 2018)" organized by the Universiti Teknikal Malaysia, Melaka. It uses empirical studies, theoretical analysis, and comparisons with psychological phenomena to show how learning methods can be employed to solve important application problems. The book also describes ongoing research in various research labs, universities and institutions, which may lead to the development of marketable products.
By presenting the latest advances in fuzzy sets and computing with words from around the globe, this book disseminates recent innovations in advanced intelligent technologies and systems. From intelligent control and intuitionistic fuzzy quantifiers to various data science and industrial applications, it includes a wide range of valuable lessons learned and ideas for future intelligent products and systems.
This book examines the context, motivation and current status of biometric systems based on the palmprint, with a specific focus on touchless and less-constrained systems. It covers new technologies in this rapidly evolving field and is one of the first comprehensive books on palmprint recognition systems. It discusses the research literature and the most relevant industrial applications of palmprint biometrics, including the low-cost solutions based on webcams. The steps of biometric recognition are described in detail, including acquisition setups, algorithms, and evaluation procedures. Constraints and limitations of current palmprint recognition systems are analyzed and discussed. The authors also introduce innovative methods for touchless and less-constrained palmprint recognition, with the aim to make palmprint biometrics easier to use in practical, daily-life applications, and overcome the typical constraints and limitations described. Touchless Palmprint Recognition Systems targets professionals and researchers working in biometrics, image processing and three-dimensional reconstruction. Advanced-level students studying biometrics and computer science will also find this material valuable as a secondary text book or reference.
3D Surface Reconstruction: Multi-Scale Hierarchical Approaches presents methods to model 3D objects in an incremental way so as to capture more finer details at each step. The configuration of the model parameters, the rationale and solutions are described and discussed in detail so the reader has a strong understanding of the methodology. Modeling starts from data captured by 3D digitizers and makes the process even more clear and engaging. Innovative approaches, based on two popular machine learning paradigms, namely Radial Basis Functions and the Support Vector Machines, are also introduced. These paradigms are innovatively extended to a multi-scale incremental structure, based on a hierarchical scheme. The resulting approaches allow readers to achieve high accuracy with limited computational complexity, and makes the approaches appropriate for online, real-time operation. Applications can be found in any domain in which regression is required. 3D Surface Reconstruction: Multi-Scale Hierarchical Approaches is designed as a secondary text book or reference for advanced-level students and researchers in computer science. This book also targets practitioners working in computer vision or machine learning related fields.
Semantic Analysis and Understanding of Human Behaviour in Video Streaming investigates the semantic analysis of the human behaviour captured by video streaming, and introduces both theoretical and technological points of view. Video analysis based on the semantic content is in fact still an open issue for the computer vision research community, especially when real-time analysis of complex scenes is concerned. This book explores an innovative, original approach to human behaviour analysis and understanding by using the syntactical symbolic analysis of images and video streaming described by means of strings of symbols. A symbol is associated to each area of the analyzed scene. When a moving object enters an area, the corresponding symbol is appended to the string describing the motion. This approach allows for characterizing the motion of a moving object with a word composed by symbols. By studying and classifying these words we can categorize and understand the various behaviours. The main advantage of this approach lies in the simplicity of the scene and motion descriptions so that the behaviour analysis will have limited computational complexity due to the intrinsic nature both of the representations and the related operations used to manipulate them. Besides, the structure of the representations is well suited for possible parallel processing, thus allowing for speeding up the analysis when appropriate hardware architectures are used. A new methodology for design systems for hierarchical high semantic level analysis of video streaming in narrow domains is also proposed. Guidelines to design your own system are provided in this book. Designed for practitioners, computer scientists and engineers working within the fields of human computer interaction, surveillance, image processing and computer vision, this book can also be used as secondary text book for advanced-level students in computer science and engineering.
This book discusses the future possibilities of AI with cloud computing and edge computing. The main goal of this book is to conduct analyses, implementation and discussion of many tools (of artificial intelligence, machine learning and deep learning and cloud computing, fog computing, and edge computing including concepts of cyber security) for understanding integration of these technologies. With this book, readers can quickly get an overview of these emerging topics and get many ideas of the future of AI with cloud, edge, and in many other areas. Topics include machine and deep learning techniques for Internet of Things based cloud systems; security, privacy and trust issues in AI based cloud and IoT based cloud systems; AI for smart data storage in cloud-based IoT; blockchain based solutions for AI based cloud and IoT based cloud systems.This book is relevent to researchers, academics, students, and professionals.
This book provides a valuable combination of relevant research works on developing smart city ecosystem from the artificial intelligence (AI) and Internet of things (IoT) perspective. The technical research works presented here are focused on a number of aspects of smart cities: smart mobility, smart living, smart environment, smart citizens, smart government, and smart waste management systems as well as related technologies and concepts. This edited book offers critical insight to the key underlying research themes within smart cities, highlighting the limitations of current developments and potential future directions.
This book constitutes the refereed proceedings of the 17th International Conference on Information Security Practice and Experience, ISPEC 2022, held in Taipei, Taiwan, in November 2022. The 33 full papers together with 2 invited papers included in this volume were carefully reviewed and selected from 87 submissions. The main goal of the conference is to promote research on new information security technologies, including their applications and their integration with IT systems in various vertical sectors.
This book highlights the recent research on hybrid intelligent systems and their various practical applications. It presents 45 selected papers from the 20th International Conference on Hybrid Intelligent Systems (HIS 2021) and 16 papers from the 17th International Conference on Information Assurance and Security, which was held online, from December 14 to 16, 2021. A premier conference in the field of artificial intelligence and machine learning applications, HIS-IAS 2021 brought together researchers, engineers and practitioners whose work involves intelligent systems, network security and their applications in industry. Including contributions by authors from over 20 countries, the book offers a valuable reference guide for all researchers, students and practitioners in the fields of computer science and engineering.
This book gathers selected high-quality research papers presented at International Conference on Advanced Computing and Intelligent Technologies (ICACIT 2021) held at NCR New Delhi, India, during March 20-21, 2021, jointly organized by Galgotias University, India, and Department of Information Engineering and Mathematics Universita Di Siena, Italy. It discusses emerging topics pertaining to advanced computing, intelligent technologies, and networks including AI and machine learning, data mining, big data analytics, high-performance computing network performance analysis, Internet of things networks, wireless sensor networks, and others. The book offers a valuable asset for researchers from both academia and industries involved in advanced studies.
Trends in Deep Learning Methodologies: Algorithms, Applications, and Systems covers deep learning approaches such as neural networks, deep belief networks, recurrent neural networks, convolutional neural networks, deep auto-encoder, and deep generative networks, which have emerged as powerful computational models. Chapters elaborate on these models which have shown significant success in dealing with massive data for a large number of applications, given their capacity to extract complex hidden features and learn efficient representation in unsupervised settings. Chapters investigate deep learning-based algorithms in a variety of application, including biomedical and health informatics, computer vision, image processing, and more. In recent years, many powerful algorithms have been developed for matching patterns in data and making predictions about future events. The major advantage of deep learning is to process big data analytics for better analysis and self-adaptive algorithms to handle more data. Deep learning methods can deal with multiple levels of representation in which the system learns to abstract higher level representations of raw data. Earlier, it was a common requirement to have a domain expert to develop a specific model for each specific application, however, recent advancements in representation learning algorithms allow researchers across various subject domains to automatically learn the patterns and representation of the given data for the development of specific models.
This book includes selected papers from the International Conference on Data Science and Intelligent Applications (ICDSIA 2020), hosted by Gandhinagar Institute of Technology (GIT), Gujarat, India, on January 24-25, 2020. The proceedings present original and high-quality contributions on theory and practice concerning emerging technologies in the areas of data science and intelligent applications. The conference provides a forum for researchers from academia and industry to present and share their ideas, views and results, while also helping them approach the challenges of technological advancements from different viewpoints. The contributions cover a broad range of topics, including: collective intelligence, intelligent systems, IoT, fuzzy systems, Bayesian networks, ant colony optimization, data privacy and security, data mining, data warehousing, big data analytics, cloud computing, natural language processing, swarm intelligence, speech processing, machine learning and deep learning, and intelligent applications and systems. Helping strengthen the links between academia and industry, the book offers a valuable resource for instructors, students, industry practitioners, engineers, managers, researchers, and scientists alike. |
You may like...
|