Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
This volume presents two reviews from the cutting-edge of Russian plasma physics research. Plasma Models of Atom and Radiative-Collisional Processes, by V.A. Astapenko, L.A. Bureyeva, V.S. Lisitsa, is devoted to a unified description of the atomic core polarization effects in the free-free, free-bound and bound-bound transitions of the charged particles in the field of multielectron atom. These effects were treated independently in various applications for more than 40 years. The universal description is based on statistical plasma models of atomic processes with complex ions and atoms. This description makes it possible to extract general scaling laws for the processes above. This review is the first attempt to give the universal approach to the problem. All types of transitions are considered in the frame of both classical and quantum models for the energy scattering of the particle interacting with the atomic core. of atoms and highly charged ions, polarization phenomena in photoeffect, new polarization channel in recombination and for Bremsstrahlung of electrons, relativistic and heavy particles on complex atoms and ions. Asymptotic Theory of Charge Exchange And Mobility Processes for Atomic Ions by B.M. Smirnov reviews the process of resonant charge exchange, and also the transport processes (mobility and diffusion coefficients) for ions in parent gases which are determined by resonant electron transfer. The basis is the asymptotic theory of resonant charge exchange that allows us to evaluate cross sections for all the elements and estimate their accuracy. A simple version of the asymptotic theory is used as follows: a parameter is the ratio between an atom cross section, and the cross section of resonant charge exchange. The cross section of this process is expressed through asymptotic parameters of a transferring electron it the atom. Experimental results are also used, but their accuracy is usually lower than can be obtained by the asymptotic theory
Reviews of Plasma Physics Volume 22, contains two reviews. The first Cooperative Effects in Plasmas by the late B.B. Kadomtsev is based on the second edition of the author's book in Russian which originated from his written lectures for students of the Moscow Institute of Physics and Technology. Kadomtsev intended to publish the book in English and even initiated the translation himself. The book represents a review of the typical plasma cooperative phenomena that determine the behavior of laboratory and astrophysical plasmas. It is characterized by lively language. The first three sections of the review deal with linear and nonlinear phenomena in fluids without a magnetic field. An additional subsection 'Solitons' has been added to the third section. The next two sections address regular nonlinear phenomena in a plasma in a magnetic field. The second review by S.V. Bulanov et al is connected with the contents of the first. The physics of the laser-plasma interaction including such nonlinear processes as wave breaking, the acceleration of charged particles, electromagnetic wave self-focusing, the relativistic soliton and vortex generation, are considered analytically and illustrated using computer simulations.
Volume 21 provides the basis of the MHD theory in two extended reviews. The first review deals with high-temperature plasma equilibrium and stability in conventional stellarators (the steady state three-dimensional magnetic confinement systems). The second review considers the processes in the stationary plasma thrusters (SPT) created by one of the authors, A.I Morozov. In spite of the three-dimensional nature of stellarators, the author of the review, V.D. Pustovitov, has been able to give a concise presentation of basic ideas and results of the rather complicated theory of stellarators, both for specialists and for students in this field. The results of experimental and theoretical investigations of a new type of discharge device, SPT, are presented in the second review. Plasma thrusters generate quasi-neutral multi-ampere streams of ions with particle energies of 50 - 1000eV. They are most widely known as electric propulsion thrusters for spacecraft, and have been mounted onboard more than 50 Russian satellites. In addition, the SPTs are now used in technological systems for processing the surface layers of various products.
Volume 21 provides the basis of the MHD theory in two extended reviews. The first review deals with high-temperature plasma equilibrium and stability in conventional stellarators (the steady state three-dimensional magnetic confinement systems). The second review considers the processes in the stationary plasma thrusters (SPT) created by one of the authors, A.I Morozov. In spite of the three-dimensional nature of stellarators, the author of the review, V.D. Pustovitov, has been able to give a concise presentation of basic ideas and results of the rather complicated theory of stellarators, both for specialists and for students in this field. The results of experimental and theoretical investigations of a new type of discharge device, SPT, are presented in the second review. Plasma thrusters generate quasi-neutral multi-ampere streams of ions with particle energies of 50 - 1000eV. They are most widely known as electric propulsion thrusters for spacecraft, and have been mounted onboard more than 50 Russian satellites. In addition, the SPTs are now used in technological systems for processing the surface layers of various products.
Reviews of Plasma Physics Volume 22, contains two reviews. The first Cooperative Effects in Plasmas by the late B.B. Kadomtsev is based on the second edition of the author's book in Russian which originated from his written lectures for students of the Moscow Institute of Physics and Technology. Kadomtsev intended to publish the book in English and even initiated the translation himself. The book represents a review of the typical plasma cooperative phenomena that determine the behavior of laboratory and astrophysical plasmas. It is characterized by lively language. The first three sections of the review deal with linear and nonlinear phenomena in fluids without a magnetic field. An additional subsection 'Solitons' has been added to the third section. The next two sections address regular nonlinear phenomena in a plasma in a magnetic field. The second review by S.V. Bulanov et al is connected with the contents of the first. The physics of the laser-plasma interaction including such nonlinear processes as wave breaking, the acceleration of charged particles, electromagnetic wave self-focusing, the relativistic soliton and vortex generation, are considered analytically and illustrated using computer simulations.
Reviews of Plasma Physics, Volume 23, presents two high quality reviews from the cutting-edge of Russian plasma physics research: "Plasma Models of Atom and Radiative-Collisional Processes", by V.A. Astapenko, L.A. Bureyeva, V.S. Lisitsa, is devoted to a unified description of the atomic core polarization effects in the free-free, free-bound and bound-bound transitions of the charged particles in the field of multielectron atom. "Asymptotic Theory of Charge Exchange And Mobility Processes for Atomic Ions" by B.M. Smirnov reviews the process of resonant charge exchange, and also the transport processes (mobility and diffusion coefficients) for ions in parent gases which are determined by resonant electron transfer.
|
You may like...
|