Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
Power and telecommunications systems are growing increasingly complex. This increases their vulnerability to lightning-related effects. Due to the high requirements for the reliability of power and telecommunications systems and the associated sensitive equipment, protection against lightning is of paramount importance. Lightning-induced effects are to be quantified in order to assess the risks and design adequate protection. This can be done with the traditional approach, which is based on the transmission-line theory and an electromagnetic-field-to-conductor coupling model, as well as with the advanced numerical techniques, such as the finite difference time-domain (FDTD) method. Interest in the FDTD method is steadily growing because of the availability of software and increased computer capabilities. This book provides an introduction to the FDTD method and its applications to studies of lightning-induced effects in power and telecommunication systems. It also contains background information on lightning, lightning models, and lightning electromagnetics. This book is essential reading for electrical engineers and researchers, who are interested in lightning surge protection studies, as well as for senior undergraduate and graduate students specializing in electrical engineering.
This new book provides a focused set of topics suitable for advanced undergraduate or graduate courses on lightning. It presents the current state of the art in lightning science including areas such as lightning modeling, calculation of lightning electromagnetic fields, electromagnetic methods of lightning location, and lightning damaging effects and protective techniques. Pedagogical features designed to facilitate class learning include end-of-chapter summaries, further reading suggestions, questions and problems, and a glossary explaining key lightning and atmospheric electricity terms. A selection of appendices are provided at the end of the book, which include detailed derivations of exact equations for computing electric and magnetic fields produced by lightning. Designed for a single-semester course on lightning and its effects, and written in a style accessible to technical non-experts, this book will also be a useful, up-to-date reference for scientists, engineers and practitioners who have to deal with lightning in their work.
Lightning: Physics and Effects is the first book that covers essentially all aspects of lightning, including lightning physics, lightning protection and the interaction of lightning with a variety of objects and systems as well as with the environment. It is written in a style that will be accessible to the technical non-expert and is addressed to anyone interested in lightning and its effects. This will include physicists, engineers working in the power, communications, computer and aviation industries, meteorologists, atmospheric chemists, foresters, ecologists, physicians working in the area of electrical trauma and architects. This comprehensive reference volume contains over 300 illustrations, 70 tables containing quantitative information and a bibliography of more than 6000 references.
|
You may like...
|