Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
Random inhomogeneous media may possess unique physical properties that are significantly enhanced and may attain a level of practical importance and versatility that rivals or surpasses their geometrically ordered counterparts. Making judicious use of these enhancement effects, as well as of other aspects of the many complex resonances that distinguish these systems, can lead to new and unexpected physics and many applications. Localization of various sorts of optical excitations occur and recur in a wide gamut of disordered systems, leading to the enhancement of many optical phenomena, especially nonlinear processes. The book reviews recent advances in the nonlinear optics of random media and discusses numerous applications based on the unique properties of nanostructured composite materials. The contributing authors are world best experts in the field and provide a state-of-the-art description of the world of the optics of random media.
Nonlinear Optics of Random Media reviews recent advances in in one of the most prominent fields of physics. It provides an outline of the basic models of irregular structures of random inhomogeneous media and the approaches used to describe their linear electromagnetic properties. Nonlinearities in random media are also discussed. The chapters can be read independently, so scientists and students interested in a specific problem can go directly to the relevant text.
The contributors to the book are world best experts in the optics of random media; they provide a state-of-the-art review of recent developments in the field including nonlinear optical and magneto-optical properties, Raman and hyper-Raman scattering, laser action, plasmon excitation and localized giant fields, imaging and spectroscopy of random media
This book discusses the recent advances in the area of near-field
Raman scattering, mainly focusing on tip-enhanced and
surface-enhanced Raman scattering. Some of the key features covered
here are the optical structuring and manipulations, single molecule
sensitivity, analysis of single-walled carbon nanotubes, and
analytic applications in chemistry, biology and material sciences.
This book also discusses the plasmonic materials for better
enhancement, and optical antennas. Further, near-field microscopy
based on second harmonic generation is also discussed. Chapters
have been written by some of the leading scientists in this field,
who present some of their recent work in this field.
Current developments in optical technologies are being directed
toward nanoscale devices with subwavelength dimensions, in which
photons are manipulated on the nanoscale. Although light is clearly
the fastest means to send information to and from the nanoscale,
there is a fundamental incompatibility between light at the
microscale and devices and processes at the nanoscale.
Nanostructured metals which support surface plasmon modes can
concentrate electromagnetic (EM) fields to a small fraction of a
wavelength while enhancing local field strengths by several orders
of magnitude. For this reason, plasmonic nanostructures can serve
as optical couplers across the nano-micro interface:
metal-dielectric and metal-semiconductor nanostructures can act as
optical nanoantennae and enhance light matter coupling in nanoscale
devices. This book describes how one can fully integrate plasmonic
nanostructures into dielectric, semiconductor, and molecular
photonic devices, for guiding photons across the nano-micro
interface and for detecting molecules with unsurpassed sensitivity.
|
You may like...
|