Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
This first book on greedy approximation gives a systematic presentation of the fundamental results. It also contains an introduction to two hot topics in numerical mathematics: learning theory and compressed sensing. Nonlinear approximation is becoming increasingly important, especially since two types are frequently employed in applications: adaptive methods are used in PDE solvers, while m-term approximation is used in image/signal/data processing, as well as in the design of neural networks. The fundamental question of nonlinear approximation is how to devise good constructive methods (algorithms) and recent results have established that greedy type algorithms may be the solution. The author has drawn on his own teaching experience to write a book ideally suited to graduate courses. The reader does not require a broad background to understand the material. Important open problems are included to give students and professionals alike ideas for further research.
This book provides a systematic survey of classical and recent results on hyperbolic cross approximation. Motivated by numerous applications, the last two decades have seen great success in studying multivariate approximation. Multivariate problems have proven to be considerably more difficult than their univariate counterparts, and recent findings have established that multivariate mixed smoothness classes play a fundamental role in high-dimensional approximation. The book presents essential findings on and discussions of linear and nonlinear approximations of the mixed smoothness classes. Many of the important open problems explored here will provide both students and professionals with inspirations for further research.
|
You may like...
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn
Paperback
|