Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 10 of 10 matches in All Departments
The infinite No other question has ever moved so profoundly the spirit of man; no other idea has so fruitfully stimulated his intellect; yet no other concept stands in greater need of clarification than that of the infinite. David Hilbert This interdisciplinary study of infinity explores the concept through the prism of mathematics and then offers more expansive investigations in areas beyond mathematical boundaries to reflect the broader, deeper implications of infinity for human intellectual thought. More than a dozen world renowned researchers in the fields of mathematics, physics, cosmology, philosophy, and theology offer a rich intellectual exchange among various current viewpoints, rather than displaying a static picture of accepted views on infinity. The book starts with a historical examination of the transformation of infinity from a philosophical and theological study to one dominated by mathematics. It then offers technical discussions on the understanding of mathematical infinity. Following this, the book considers the perspectives of physics and cosmology: Can infinity be found in the real universe? Finally, the book returns to questions of philosophical and theological aspects of infinity."
The starting point for this monograph is the previously unknown connection between the Continuum Hypothesis and the saturation of the non-stationary ideal on 1; and the principle result of this monograph is the identification of a canonical model in which the Continuum Hypothesis is false. This is the first example of such a model and moreover the model can be characterized in terms of maximality principles concerning the universal-existential theory of all sets of countable ordinals. This model is arguably the long sought goal of the study of forcing axioms and iterated forcing but is obtained by completely different methods, for example no theory of iterated forcing whatsoever is required. The construction of the model reveals a powerful technique for obtaining independence results regarding the combinatorics of the continuum, yielding a number of results which have yet to be obtained by any other method. This monograph is directed to researchers and advanced graduate students in Set Theory. The second edition is updated to take into account some of the developments in the decade since the first edition appeared, this includes a revised discussion of -logic and related matters.
This volume presents the lecture notes of short courses given by three leading experts in mathematical logic at the 2010 and 2011 Asian Initiative for Infinity Logic Summer Schools. The major topics covered set theory and recursion theory, with particular emphasis on forcing, inner model theory and Turing degrees, offering a wide overview of ideas and techniques introduced in contemporary research in the field of mathematical logic.
This book is a brief and focused introduction to the reverse mathematics and computability theory of combinatorial principles, an area of research which has seen a particular surge of activity in the last few years. It provides an overview of some fundamental ideas and techniques, and enough context to make it possible for students with at least a basic knowledge of computability theory and proof theory to appreciate the exciting advances currently happening in the area, and perhaps make contributions of their own. It adopts a case-study approach, using the study of versions of Ramsey's Theorem (for colorings of tuples of natural numbers) and related principles as illustrations of various aspects of computability theoretic and reverse mathematical analysis. This book contains many exercises and open questions.
This volume presents the lecture notes of short courses given by three leading experts in mathematical logic at the 2012 Asian Initiative for Infinity Logic Summer School. The major topics cover set-theoretic forcing, higher recursion theory, and applications of set theory to C*-algebra. This volume offers a wide spectrum of ideas and techniques introduced in contemporary research in the field of mathematical logic to students, researchers and mathematicians.
This volume presents the lecture notes of short courses given by three leading experts in mathematical logic at the 2012 Asian Initiative for Infinity Logic Summer School. The major topics cover set-theoretic forcing, higher recursion theory, and applications of set theory to C*-algebra. This volume offers a wide spectrum of ideas and techniques introduced in contemporary research in the field of mathematical logic to students, researchers and mathematicians.
In the mathematical practice, the Baire category method is a tool for establishing the existence of a rich array of generic structures. However, in mathematics, the Baire category method is also behind a number of fundamental results such as the Open Mapping Theorem or the Banach-Steinhaus Boundedness Principle. This volume brings the Baire category method to another level of sophistication via the internal version of the set-theoretic forcing technique. It is the first systematic account of applications of the higher forcing axioms with the stress on the technique of building forcing notions rather than on the relationship between different forcing axioms or their consistency strengths.
This volume is based on the talks given at the Workshop on Infinity and Truth held at the Institute for Mathematical Sciences, National University of Singapore, from 25 to 29 July 2011. The chapters cover topics in mathematical and philosophical logic that examine various aspects of the foundations of mathematics. The theme of the volume focuses on two basic foundational questions: (i) What is the nature of mathematical truth and how does one resolve questions that are formally unsolvable within the Zermelo-Fraenkel Set Theory with the Axiom of Choice, and (ii) Do the discoveries in mathematics provide evidence favoring one philosophical view over others? These issues are discussed from the vantage point of recent progress in foundational studies.The final chapter features questions proposed by the participants of the Workshop that will drive foundational research. The wide range of topics covered here will be of interest to students, researchers and mathematicians concerned with issues in the foundations of mathematics.
This interdisciplinary study of infinity explores the concept through the prism of mathematics and then offers more expansive investigations in areas beyond mathematical boundaries to reflect the broader, deeper implications of infinity for human intellectual thought. More than a dozen world-renowned researchers in the fields of mathematics, physics, cosmology, philosophy and theology offer a rich intellectual exchange among various current viewpoints, rather than displaying a static picture of accepted views on infinity. The book starts with a historical examination of the transformation of infinity from a philosophical and theological study to one dominated by mathematics. It then offers technical discussions on the understanding of mathematical infinity. Following this, the book considers the perspectives of physics and cosmology: can infinity be found in the real universe? Finally, the book returns to questions of philosophical and theological aspects of infinity.
Super-real fields are a class of large totally ordered fields. These fields are larger than the real line. They arise from quotients of the algebra of continuous functions on a compact space by a prime ideal, and generalize the well-known class of ultrapowers, and indeed the continuous ultrapowers. These fields are of interest in their own right and have many surprising applications, both in analysis and logic. The authors introduce some exciting new fields, including a natural generalization of the real line R, and resolve a number of open problems. The book is intended to be accessible to analysts and logicians. After an exposition of the general theory of ordered fields and a careful proof of some classic theorems, including Kaplansky's embedding theorems , the authors establish important new results in Banach algebra theory, non-standard analysis, an model theory.
|
You may like...
|