Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
In a certain sense this book has been twenty-five years in the writing, since I first struggled with the foundations of the subject as a graduate student. It has taken that long to develop a deep appreciation of what Gibbs was attempting to convey to us near the end of his life and to understand fully the same ideas as resurrected by E.T. Jaynes much later. Many classes of students were destined to help me sharpen these thoughts before I finally felt confident that, for me at least, the foundations of the subject had been clarified sufficiently. More than anything, this work strives to address the following questions: What is statistical mechanics? Why is this approach so extraordinarily effective in describing bulk matter in terms of its constituents? The response given here is in the form of a very definite point of view-the principle of maximum entropy (PME). There have been earlier attempts to approach the subject in this way, to be sure, reflected in the books by Tribus [Thermostat ics and Thermodynamics, Van Nostrand, 1961], Baierlein [Atoms and Information Theory, Freeman, 1971], and Hobson [Concepts in Statistical Mechanics, Gordon and Breach, 1971].
This volume contains the text of the twenty-five papers presented at two workshops entitled Maximum-Entropy and Bayesian Methods in Applied Statistics, which were held at the University of Wyoming from June 8 to 10, 1981, and from August 9 to 11, 1982. The workshops were organized to bring together researchers from different fields to critically examine maxi mum-entropy and Bayesian methods in science, engineering, medicine, oceanography, economics, and other disciplines. An effort was made to maintain an informal environment where ideas could be easily ~xchanged. That the workshops were at least partially successful is borne out by the fact that there have been two succeeding workshops, and the upcoming Fifth Workshop promises to be the largest of all. These workshops and their proceedings could not have been brought to their final form without the substantial help of a number of people. The support of David Hofmann, the past chairman, and Glen Rebka, Jr. , the present chairman of the Physics Department of the University of Wyoming, has been strong and essential. Glen has taken a special interest in seeing that the proceedings have received the support required for their comple tion. The financial support of the Office of University Research Funds, University of Wyoming, is gratefully acknowledged. The secretarial staff, in particular Evelyn Haskell, Janice Gasaway, and Marce Mitchum, of the University of Wyoming Physics Department has contributed a great number of hours in helping C. Ray Smith organize and direct the workshops.
In this volume we continue the logical development of the work begun in Volume I, and the equilibrium theory now becomes a very special case of the exposition presented here. Once a departure is made from equilibrium, however, the problems become deeper and more subtle-and unlike the equilibrium theory, many aspects of nonequilibrium phenomena remain poorly understood. For over a century a great deal of effort has been expended on the attempt to develop a comprehensive and sensible description of nonequilibrium phenomena and irreversible processes. What has emerged is a hodgepodge of ad hoc constructs that do little to provide either a firm foundation, or a systematic means for proceeding to higher levels of understanding with respect to ever more complicated examples of nonequilibria. Although one should rightfully consider this situation shameful, the amount of effort invested testifies to the degree of difficulty of the problems. In Volume I it was emphasized strongly that the traditional exposition of equilibrium theory lacked a certain cogency which tended to impede progress with extending those considerations to more complex nonequilibrium problems. The reasons for this were adduced to be an unfortunate reliance on ergodicity and the notions of kinetic theory, but in the long run little harm was done regarding the treatment of equilibrium problems. On the nonequilibrium level the potential for disaster increases enormously, as becomes evident already in Chapter 1.
The 10th International Workshop on Maximum Entropy and Bayesian Methods, MaxEnt 90, was held in Laramie, Wyoming from 30 July to 3 August 1990. This volume contains the scientific presentations given at that meeting. This series of workshops originated in Laramie in 1981, where the first three of what were to become annual workshops were held. The fourth meeting was held in Calgary. the fifth in Laramie, the sixth and seventh in Seattle, the eighth in Cambridge, England, and the ninth at Hanover, New Hampshire. It is most appropriate that the tenth workshop, occurring in the centennial year of Wyoming's statehood, was once again held in Laramie. The original purpose of these workshops was twofold. The first was to bring together workers from diverse fields of scientific research who individually had been using either some form of the maximum entropy method for treating ill-posed problems or the more general Bayesian analysis, but who, because of the narrow focus that intra-disciplinary work tends to impose upon most of us, might be unaware of progress being made by others using these same techniques in other areas. The second was to introduce to those who were somewhat aware of maximum entropy and Bayesian analysis and wanted to learn more, the foundations, the gestalt, and the power of these analyses. To further the first of these ends, presenters at these workshops have included workers from area. s as varied as astronomy, economics, environmenta.
The pioneering work of Edwin T. Jaynes in the field of statistical physics, quantum optics, and probability theory has had a significant and lasting effect on the study of many physical problems, ranging from fundamental theoretical questions through to practical applications such as optical image restoration. Physics and Probability is a collection of papers in these areas by some of his many colleagues and former students, based largely on lectures given at a symposium celebrating Jaynes' contributions, on the occasion of his seventieth birthday and retirement as Wayman Crow Professor of Physics at Washington University. The collection contains several authoritative overviews of current research on maximum entropy and quantum optics, where Jaynes' work has been particularly influential, as well as reports on a number of related topics. In the concluding paper, Jaynes looks back over his career, and gives encouragement and sound advice to young scientists. All those engaged in research on any of the topics discussed in these papers will find this a useful and fascinating collection, and a fitting tribute to an outstanding and innovative scientist.
The 10th International Workshop on Maximum Entropy and Bayesian Methods, MaxEnt 90, was held in Laramie, Wyoming from 30 July to 3 August 1990. This volume contains the scientific presentations given at that meeting. This series of workshops originated in Laramie in 1981, where the first three of what were to become annual workshops were held. The fourth meeting was held in Calgary. the fifth in Laramie, the sixth and seventh in Seattle, the eighth in Cambridge, England, and the ninth at Hanover, New Hampshire. It is most appropriate that the tenth workshop, occurring in the centennial year of Wyoming's statehood, was once again held in Laramie. The original purpose of these workshops was twofold. The first was to bring together workers from diverse fields of scientific research who individually had been using either some form of the maximum entropy method for treating ill-posed problems or the more general Bayesian analysis, but who, because of the narrow focus that intra-disciplinary work tends to impose upon most of us, might be unaware of progress being made by others using these same techniques in other areas. The second was to introduce to those who were somewhat aware of maximum entropy and Bayesian analysis and wanted to learn more, the foundations, the gestalt, and the power of these analyses. To further the first of these ends, presenters at these workshops have included workers from area. s as varied as astronomy, economics, environmenta.
In this volume we continue the logical development of the work begun in Volume I, and the equilibrium theory now becomes a very special case of the exposition presented here. Once a departure is made from equilibrium, however, the problems become deeper and more subtle-and unlike the equilibrium theory, many aspects of nonequilibrium phenomena remain poorly understood. For over a century a great deal of effort has been expended on the attempt to develop a comprehensive and sensible description of nonequilibrium phenomena and irreversible processes. What has emerged is a hodgepodge of ad hoc constructs that do little to provide either a firm foundation, or a systematic means for proceeding to higher levels of understanding with respect to ever more complicated examples of nonequilibria. Although one should rightfully consider this situation shameful, the amount of effort invested testifies to the degree of difficulty of the problems. In Volume I it was emphasized strongly that the traditional exposition of equilibrium theory lacked a certain cogency which tended to impede progress with extending those considerations to more complex nonequilibrium problems. The reasons for this were adduced to be an unfortunate reliance on ergodicity and the notions of kinetic theory, but in the long run little harm was done regarding the treatment of equilibrium problems. On the nonequilibrium level the potential for disaster increases enormously, as becomes evident already in Chapter 1.
In a certain sense this book has been twenty-five years in the writing, since I first struggled with the foundations of the subject as a graduate student. It has taken that long to develop a deep appreciation of what Gibbs was attempting to convey to us near the end of his life and to understand fully the same ideas as resurrected by E.T. Jaynes much later. Many classes of students were destined to help me sharpen these thoughts before I finally felt confident that, for me at least, the foundations of the subject had been clarified sufficiently. More than anything, this work strives to address the following questions: What is statistical mechanics? Why is this approach so extraordinarily effective in describing bulk matter in terms of its constituents? The response given here is in the form of a very definite point of view-the principle of maximum entropy (PME). There have been earlier attempts to approach the subject in this way, to be sure, reflected in the books by Tribus [Thermostat ics and Thermodynamics, Van Nostrand, 1961], Baierlein [Atoms and Information Theory, Freeman, 1971], and Hobson [Concepts in Statistical Mechanics, Gordon and Breach, 1971].
This volume contains the text of the twenty-five papers presented at two workshops entitled Maximum-Entropy and Bayesian Methods in Applied Statistics, which were held at the University of Wyoming from June 8 to 10, 1981, and from August 9 to 11, 1982. The workshops were organized to bring together researchers from different fields to critically examine maxi mum-entropy and Bayesian methods in science, engineering, medicine, oceanography, economics, and other disciplines. An effort was made to maintain an informal environment where ideas could be easily ~xchanged. That the workshops were at least partially successful is borne out by the fact that there have been two succeeding workshops, and the upcoming Fifth Workshop promises to be the largest of all. These workshops and their proceedings could not have been brought to their final form without the substantial help of a number of people. The support of David Hofmann, the past chairman, and Glen Rebka, Jr. , the present chairman of the Physics Department of the University of Wyoming, has been strong and essential. Glen has taken a special interest in seeing that the proceedings have received the support required for their comple tion. The financial support of the Office of University Research Funds, University of Wyoming, is gratefully acknowledged. The secretarial staff, in particular Evelyn Haskell, Janice Gasaway, and Marce Mitchum, of the University of Wyoming Physics Department has contributed a great number of hours in helping C. Ray Smith organize and direct the workshops.
|
You may like...
|