Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 13 of 13 matches in All Departments
This book provides an in-depth look at the behavior, design, and construction of offshore structures. It describes the behavior of cylindrical members and suggests appropriate software, written by the contributors, to determine everything from loading up to the ultimate load, including post-buckling and cyclic inelasticity.
The Principles and Application in Engineering Series is a series of convenient, economical references sharply focused on particular engineering topics and subspecialties. Each volume in this series comprises chapters carefully selected from CRC's bestselling handbooks, logically organized for optimum convenience, and thoughtfully priced to fit every budget. From the award-winning Bridge Engineering Handbook, Bridge Engineering: Construction and Maintenance takes an in-depth look at the construction engineering and maintenance aspects of steel and concrete bridges. Topics include effective project management, construction procedures and practices, construction and maintenance inspections and ratings, and bridge strengthening and rehabilitation.
Many important advances in designing earthquake-resistant structures have occurred over the last several years. Civil engineers need an authoritative source of information that reflects the issues that are unique to the field. Comprising chapters selected from the second edition of the best-selling Handbook of Structural Engineering, Earthquake Engineering for Structural Design provides a tightly focused, concise, and valuable guide to the theoretical, practical, and computational aspects of earthquake engineering. In chapters contributed by renowned experts from around the world, this book supplies the latest concepts, design methodologies, and analytical techniques for mitigating the effects of seismic damage to structures. It discusses the fundamentals of earthquake engineering, explaining the causes of earthquakes and faulting, measurement of earthquakes, and characterization of seismicity. Subsequent chapters discuss the various types of earthquake damage to structures including recent improvements in earthquake performance, seismic design of buildings and bridges considering various types of construction materials, and performance-based seismic design and evaluation of building structures. The book introduces probabilistic approaches to performance-based methodologies as well as an application example of performance-based design. Earthquake Engineering for Structural Design offers practical tools gathered together in a convenient reference for immediate implementation. It is an ideal resource for civil and structural engineers specializing in earthquake engineering.
Many important advances in designing modern structures have occurred over the last several years. Structural engineers need an authoritative source of information that thoroughly and concisely covers the foundational principles of the field. Comprising chapters selected from the second edition of the best-selling Handbook of Structural Engineering, Principles of Structural Design provides a tightly focused, concise, and valuable guide to the theoretical, practical, and computational aspects of structural design. This book systematically explores the fundamental concepts underlying structural design for each major type of structural material. Expert contributors authoritatively discuss steel structures, steel frame design using advanced analysis, cold-formed steel structures, reinforced concrete structures, prestressed concrete, and masonry, timber, and aluminum structures. For each construction material, the chapter explores the material properties, design considerations, and structural principles affecting overall design. Reflecting recent advances, the book includes two chapters devoted to reliability-based structural design and structure configuration based on wind engineering. Computational methods and simulation techniques illustrate the concepts of reliability-based design, while examples of real bridges highlight the application of wind engineering principles and methods. Principles of Structural Design couples fundamental concepts with advanced practices. It is an ideal introduction for newcomers to the field as well as a perfect review and quick-reference guide for seasoned engineers.
Theory of Adaptive Structures provides the basic theory for
controlling adaptive structures in static and dynamic environments.
It synthesizes well-established theories on modern control as well
as statics and dynamics of deformable bodies. Discussions
concentrate on the discrete parameter adaptive structures dealing
with actuator placement, actuator selection, and actuation
computation problems - keeping these structures at close proximity
of any chosen nominal state with the least energy consumption. An
introduction to the distributed parameter adaptive structures is
also provided.
Despite tremendous advances made in fracture mechanics of concrete in recent years, very little information has been available on the nature of fracture processes and on reliable test methods for determining parameters for the different models. Moreover, most texts on this topic discuss numerical modeling but fail to consider experimentation. This book fills these gaps and synthesizes progress in the field in a simple, straightforward manner geared to practical applications.
This book provides an in-depth look at the behavior, design, and construction of offshore structures. It describes the behavior of cylindrical members and suggests appropriate software, written by the contributors, to determine everything from loading up to the ultimate load, including post-buckling and cyclic inelasticity.
This book provides a comprehensive presentation of artificial intelligence (AI) methodologies and tools valuable for solving a wide spectrum of engineering problems. What's more, it offers these AI tools on an accompanying disk with easy-to-use software.
Plastic Design of Steel Frames assesses the current status and
future direction of computer-based analyses of inelastic strength
and stability for direct frame design. It shows how design rules
are used in practical frame design and provides an introduction to
the second-order theory of inelastic frame design.
This book is designed for use as a supplement to the textbook "Plasticity for Structural Engineers" by W.F. Chen and D.J. Han (Springer-Verlag, 1988) or other plasticity texts. The purpose is to help students and structural engineers learn and practice how to solve typical engineering plasticity problems in general and, more importantly, how to use computers to solve plasticity problems in structural engineering in particular. To this end, specific numerical algorithms in the computer software implementation of the theory together with actual code development are given. A number of solved and supplementary problems are provided, as well as two computer-aided-education (CAE) programs, to enhance the students' understanding of these subjects.
Many important advances in designing modern structures have occurred over the last several years. Structural engineers need an authoritative source of information that thoroughly and concisely covers the foundational principles of the field. Comprising chapters selected from the second edition of the best-selling Handbook of Structural Engineering, Principles of Structural Design provides a tightly focused, concise, and valuable guide to the theoretical, practical, and computational aspects of structural design. This book systematically explores the fundamental concepts underlying structural design for each major type of structural material. Expert contributors authoritatively discuss steel structures, steel frame design using advanced analysis, cold-formed steel structures, reinforced concrete structures, prestressed concrete, and masonry, timber, and aluminum structures. For each construction material, the chapter explores the material properties, design considerations, and structural principles affecting overall design. Reflecting recent advances, the book includes two chapters devoted to reliability-based structural design and structure configuration based on wind engineering. Computational methods and simulation techniques illustrate the concepts of reliability-based design, while examples of real bridges highlight the application of wind engineering principles and methods. Principles of Structural Design couples fundamental concepts with advanced practices. It is an ideal introduction for newcomers to the field as well as a perfect review and quick-reference guide for seasoned engineers.
First published in 1995, the award-winning Civil Engineering Handbook soon became known as the field's definitive reference. To retain its standing as a complete, authoritative resource, the editors have incorporated into this edition the many changes in techniques, tools, and materials that over the last seven years have found their way into civil engineering research and practice.
Continuing the tradition of the best-selling Handbook of Structural Engineering, this second edition is a comprehensive reference to the broad spectrum of structural engineering, encapsulating the theoretical, practical, and computational aspects of the field. The authors address a myriad of topics, covering both traditional and innovative approaches to analysis, design, and rehabilitation. The second edition has been expanded and reorganized to be more informative and cohesive. It also follows the developments that have emerged in the field since the previous edition, such as advanced analysis for structural design, performance-based design of earthquake-resistant structures, lifecycle evaluation and condition assessment of existing structures, the use of high-performance materials for construction, and design for safety. Additionally, the book includes numerous tables, charts, and equations, as well as extensive references, reading lists, and websites for further study or more in-depth information. Emphasizing practical applications and easy implementation, this text reflects the increasingly global nature of engineering, compiling the efforts of an international panel of experts from industry and academia. This is a necessity for anyone studying or practicing in the field of structural engineering. New to this edition -Fundamental theories of structural dynamics -Advanced analysis -Wind and earthquake-resistant design -Design of prestressed concrete, masonry, timber, and glass structures -Properties, behavior, and use of high-performance steel, concrete, and fiber-reinforced polymers -Semirigid frame structures -Structural bracing -Structural design for fire safety
|
You may like...
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn
Paperback
|