Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
Hidden Markov Models for Time Series: An Introduction Using R, Second Edition illustrates the great flexibility of hidden Markov models (HMMs) as general-purpose models for time series data. The book provides a broad understanding of the models and their uses. After presenting the basic model formulation, the book covers estimation, forecasting, decoding, prediction, model selection, and Bayesian inference for HMMs. Through examples and applications, the authors describe how to extend and generalize the basic model so that it can be applied in a rich variety of situations. The book demonstrates how HMMs can be applied to a wide range of types of time series: continuous-valued, circular, multivariate, binary, bounded and unbounded counts, and categorical observations. It also discusses how to employ the freely available computing environment R to carry out the computations. Features Presents an accessible overview of HMMs Explores a variety of applications in ecology, finance, epidemiology, climatology, and sociology Includes numerous theoretical and programming exercises Provides most of the analysed data sets online New to the second edition A total of five chapters on extensions, including HMMs for longitudinal data, hidden semi-Markov models and models with continuous-valued state process New case studies on animal movement, rainfall occurrence and capture-recapture data
Hidden Markov Models for Time Series: An Introduction Using R, Second Edition illustrates the great flexibility of hidden Markov models (HMMs) as general-purpose models for time series data. The book provides a broad understanding of the models and their uses. After presenting the basic model formulation, the book covers estimation, forecasting, decoding, prediction, model selection, and Bayesian inference for HMMs. Through examples and applications, the authors describe how to extend and generalize the basic model so that it can be applied in a rich variety of situations. The book demonstrates how HMMs can be applied to a wide range of types of time series: continuous-valued, circular, multivariate, binary, bounded and unbounded counts, and categorical observations. It also discusses how to employ the freely available computing environment R to carry out the computations. Features Presents an accessible overview of HMMs Explores a variety of applications in ecology, finance, epidemiology, climatology, and sociology Includes numerous theoretical and programming exercises Provides most of the analysed data sets online New to the second edition A total of five chapters on extensions, including HMMs for longitudinal data, hidden semi-Markov models and models with continuous-valued state process New case studies on animal movement, rainfall occurrence and capture-recapture data
The first accessible introduction to the many various wildlife
assessment methods! This book uses a new approach that makes the
full range of methods accessible in a way that has not previously
been possible.
Das UEbungsbuch stellt eine ausgesuchte Sammlung von Problemstellungen und Loesungen bereit, die durch eine Formelsammlung mit den wichtigsten im Buch verwendeten Formeln abgerundet wird. Zusatzlich wird ein umfangreiches Set von Programmen in R zur Verfugung gestellt, die zur Aufgabenstellung und Loesung geschrieben wurden. Der Anhang des Buches beinhaltet daher auch eine kurze Einfuhrung in die Statistik-Software R. Der Inhalt, Organisation inklusive Kapitelaufteilung orientiert sich an dem bei Springer erschienenem Werk "Statistik fur Bachelor- und Masterstudenten: Eine Einfuhrung fur Wirtschafts- und Sozialwissenschaftler"
Das Buch fuhrt in die wesentlichen statistischen Konzepte und Ideen ein und erlautert anhand von Beispielen detailliert deren Umsetzung. Der Stil ist, anders als bei den meisten Konkurrenzwerken, betont locker gehalten - ohne dabei auf eine exakte Darstellung zu verzichten. Das Buch ist speziell auf die Bedurfnisse von Anfangern im Fach Statistik zugeschnitten und fur Bachelor- und Masterstudenten aller Disziplinen geeignet - auch zum Selbststudium."
|
You may like...
|