Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
Special functions and orthogonal polynomials in particular have been around for centuries. Can you imagine mathematics without trigonometric functions, the exponential function or polynomials? The present set of lecture notes contains seven chapters about the current state of orthogonal polynomials and special functions and gives a view on open problems and future directions.
The set of lectures from the Summer School held in Leuven in 2002 provide an up-to-date account of recent developments in orthogonal polynomials and special functions, in particular for algorithms for computer algebra packages, 3nj-symbols in representation theory of Lie groups, enumeration, multivariable special functions and Dunkl operators, asymptotics via the Riemann-Hilbert method, exponential asymptotics and the Stokes phenomenon. The volume aims at graduate students and post-docs working in the field of orthogonal polynomials and special functions, and in related fields interacting with orthogonal polynomials, such as combinatorics, computer algebra, asymptotics, representation theory, harmonic analysis, differential equations, physics. The lectures are self-contained requiring only a basic knowledge of analysis and algebra, and each includes many exercises.
Recently there has been a great deal of interest in the theory of orthogonal polynomials. The number of books treating the subject, however, is limited. This monograph brings together some results involving the asymptotic behaviour of orthogonal polynomials when the degree tends to infinity, assuming only a basic knowledge of real and complex analysis. An extensive treatment, starting with special knowledge of the orthogonality measure, is given for orthogonal polynomials on a compact set and on an unbounded set. Another possible approach is to start from properties of the coefficients in the three-term recurrence relation for orthogonal polynomials. This is done using the methods of (discrete) scattering theory. A new method, based on limit theorems in probability theory, to obtain asymptotic formulas for some polynomials is also given. Various consequences of all the results are described and applications are given ranging from random matrices and birth-death processes to discrete SchrAdinger operators, illustrating the close interaction with different branches of applied mathematics.
This is the first of three volumes that form the Encyclopedia of Special Functions, an extensive update of the Bateman Manuscript Project. Volume 1 contains most of the material on orthogonal polynomials, from the classical orthogonal polynomials of Hermite, Laguerre and Jacobi to the Askey-Wilson polynomials, which are the most general basic hypergeometric orthogonal polynomials. Separate chapters cover orthogonal polynomials on the unit circle, zeros of orthogonal polynomials and matrix orthogonal polynomials, with detailed results about matrix-valued Jacobi polynomials. A chapter on moment problems provides many examples of indeterminate moment problems. A thorough bibliography rounds off what will be an essential reference.
There are a number of intriguing connections between Painleve equations and orthogonal polynomials, and this book is one of the first to provide an introduction to these. Researchers in integrable systems and non-linear equations will find the many explicit examples where Painleve equations appear in mathematical analysis very useful. Those interested in the asymptotic behavior of orthogonal polynomials will also find the description of Painleve transcendants and their use for local analysis near certain critical points helpful to their work. Rational solutions and special function solutions of Painleve equations are worked out in detail, with a survey of recent results and an outline of their close relationship with orthogonal polynomials. Exercises throughout the book help the reader to get to grips with the material. The author is a leading authority on orthogonal polynomials, giving this work a unique perspective on Painleve equations.
|
You may like...
How Did We Get Here? - A Girl's Guide to…
Mpoomy Ledwaba
Paperback
(1)
|