Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 15 of 15 matches in All Departments
This book will serve as a reference, presenting state-of-the-art research on theoretical aspects of optimal sensor coverage problems. Readers will find it a useful tool for furthering developments on theory and applications of optimal coverage; much of the content can serve as material for advanced topics courses at the graduate level. The book is well versed with the hottest research topics such as Lifetime of Coverage, Weighted Sensor Cover, k-Coverage, Heterogeneous Sensors, Barrier, Sweep and Partial Coverage, Mobile Sensors, Camera Sensors and Energy-Harvesting Sensors, and more. Topics are introduced in a natural order from simple covers to connected covers, to the lifetime problem. Later, the book begins revisiting earlier problems ranging from the introduction of weights to coverage by k sensors and partial coverage, and from sensor heterogeneity to novel problems such as the barrier coverage problem. The book ends with coverage of mobile sensors, camera sensors, energy-harvesting sensors, underwater sensors, and crowdsensing.
Clustering is an important technique for discovering relatively dense sub-regions or sub-spaces of a multi-dimension data distribution. Clus tering has been used in information retrieval for many different purposes, such as query expansion, document grouping, document indexing, and visualization of search results. In this book, we address issues of cluster ing algorithms, evaluation methodologies, applications, and architectures for information retrieval. The first two chapters discuss clustering algorithms. The chapter from Baeza-Yates et al. describes a clustering method for a general metric space which is a common model of data relevant to information retrieval. The chapter by Guha, Rastogi, and Shim presents a survey as well as detailed discussion of two clustering algorithms: CURE and ROCK for numeric data and categorical data respectively. Evaluation methodologies are addressed in the next two chapters. Ertoz et al. demonstrate the use of text retrieval benchmarks, such as TRECS, to evaluate clustering algorithms. He et al. provide objective measures of clustering quality in their chapter. Applications of clustering methods to information retrieval is ad dressed in the next four chapters. Chu et al. and Noel et al. explore feature selection using word stems, phrases, and link associations for document clustering and indexing. Wen et al. and Sung et al. discuss applications of clustering to user queries and data cleansing. Finally, we consider the problem of designing architectures for infor mation retrieval. Crichton, Hughes, and Kelly elaborate on the devel opment of a scientific data system architecture for information retrieval."
This book provides an introduction to the mathematical theory of optimization. It emphasizes the convergence theory of nonlinear optimization algorithms and applications of nonlinear optimization to combinatorial optimization. Mathematical Theory of Optimization includes recent developments in global convergence, the Powell conjecture, semidefinite programming, and relaxation techniques for designs of approximation solutions of combinatorial optimization problems.
Introductory courses in combinatorial optimization are popular at the upper undergraduate/graduate levels in computer science, industrial engineering, and business management/OR, owed to its wide applications in these fields. There are several published textbooks that treat this course and the authors have used many of them in their own teaching experiences. This present text fills a gap and is organized with a stress on methodology and relevant content, providing a step-by-step approach for the student to become proficient in solving combinatorial optimization problems. Applications and problems are considered via recent technology developments including wireless communication, cloud computing, social networks, and machine learning, to name several, and the reader is led to the frontiers of combinatorial optimization. Each chapter presents common problems, such as minimum spanning tree, shortest path, maximum matching, network flow, set-cover, as well as key algorithms, such as greedy algorithm, dynamic programming, augmenting path, and divide-and-conquer. Historical notes, ample exercises in every chapter, strategically placed graphics, and an extensive bibliography are amongst the gems of this textbook.
Clustering is an important technique for discovering relatively dense sub-regions or sub-spaces of a multi-dimension data distribution. Clus tering has been used in information retrieval for many different purposes, such as query expansion, document grouping, document indexing, and visualization of search results. In this book, we address issues of cluster ing algorithms, evaluation methodologies, applications, and architectures for information retrieval. The first two chapters discuss clustering algorithms. The chapter from Baeza-Yates et al. describes a clustering method for a general metric space which is a common model of data relevant to information retrieval. The chapter by Guha, Rastogi, and Shim presents a survey as well as detailed discussion of two clustering algorithms: CURE and ROCK for numeric data and categorical data respectively. Evaluation methodologies are addressed in the next two chapters. Ertoz et al. demonstrate the use of text retrieval benchmarks, such as TRECS, to evaluate clustering algorithms. He et al. provide objective measures of clustering quality in their chapter. Applications of clustering methods to information retrieval is ad dressed in the next four chapters. Chu et al. and Noel et al. explore feature selection using word stems, phrases, and link associations for document clustering and indexing. Wen et al. and Sung et al. discuss applications of clustering to user queries and data cleansing. Finally, we consider the problem of designing architectures for infor mation retrieval. Crichton, Hughes, and Kelly elaborate on the devel opment of a scientific data system architecture for information retrieval."
This book provides an introduction to the mathematical theory of optimization. It emphasizes the convergence theory of nonlinear optimization algorithms and applications of nonlinear optimization to combinatorial optimization. Mathematical Theory of Optimization includes recent developments in global convergence, the Powell conjecture, semidefinite programming, and relaxation techniques for designs of approximation solutions of combinatorial optimization problems.
The 4th Annual International Conference on Combinatorial Optimization and Applications (COCOA 2010) took place in Big Island, Hawaii, USA, December 18-20, 2010. Past COCOA conferences were held in Xi'an, China (2007), Newfoundland, Canada (2008)and Huangshan, China (2009). COCOA2010providedaforumforresearchersworkingintheareasofcom- natorial optimization and its applications. In addition to theoretical results, the conference also included recent works on experimental and applied research of general algorithmic interest. The Program Committee received 108 submissions from more than 23 countries and regions, including Australia, Austria, Canada, China, Denmark, France, Germany, Hong Kong, India, Italy, Japan, Korea, Mexico, New Zealand, Poland, Slovak Republic, Spain, Sweden, Switzerland, Taiwan, UK, USA, Vietnam, etc. Among the 108 submissions, 49 regular papers were selected for presentation at the conference and are included in this volume. Some of these papers will be selected for publication in a special issue of the Journal of Combinatorial Optimization, a special issue of Theoretical Computer Science, a special issue of Optimization Letters, and a special issue of Discrete Mathematics, Algorithms and Applications under the standard refereeing procedure.
This book presents recent developments on the theoretical, algorithmic, and application aspects of Big Data in Complex and Social Networks. The book consists of four parts, covering a wide range of topics. The first part of the book focuses on data storage and data processing. It explores how the efficient storage of data can fundamentally support intensive data access and queries, which enables sophisticated analysis. It also looks at how data processing and visualization help to communicate information clearly and efficiently. The second part of the book is devoted to the extraction of essential information and the prediction of web content. The book shows how Big Data analysis can be used to understand the interests, location, and search history of users and provide more accurate predictions of User Behavior. The latter two parts of the book cover the protection of privacy and security, and emergent applications of big data and social networks. It analyzes how to model rumor diffusion, identify misinformation from massive data, and design intervention strategies. Applications of big data and social networks in multilayer networks and multiparty systems are also covered in-depth.
This book constitutes the proceedings of the 15th International Conference on Algorithmic Aspects in Information and Management, AAIM 2021, which was held online during December 20-22, 2021. The conference was originally planned to take place in Dallas, Texas, USA, but changed to a virtual event due to the COVID-19 pandemic. The 38 regular papers included in this book were carefully reviewed and selected from 62 submissions. They were organized in the following topical sections: approximation algorithms; scheduling; nonlinear combinatorial optimization; network problems; blockchain, logic, complexity and reliability; and miscellaneous.
This volume constitutes the proceedings of the 14th International Conference on Combinatorial Optimization and Applications, COCOA 2020, held in Dallas, TX, USA, in December 2020. The 55 full papers presented in this volume were carefully reviewed and selected from 104 submissions. The papers are grouped into the following topics: Approximation Algorithms; Scheduling; Network Optimization; Complexity and Logic; Search, Facility and Graphs; Geometric Problem; Sensors, Vehicles and Graphs; and Graph Problems. Due to the Corona pandemic this event was held virtually.
This self-contained book describes social influence from a computational point of view, with a focus on recent and practical applications, models, algorithms and open topics for future research. Researchers, scholars, postgraduates and developers interested in research on social networking and the social influence related issues will find this book useful and motivating. The latest research on social computing is presented along with and illustrations on how to understand and manipulate social influence for knowledge discovery by applying various data mining techniques in real world scenarios. Experimental reports, survey papers, models and algorithms with specific optimization problems are depicted. The main topics covered in this book are: chrematistics of social networks, modeling of social influence propagation, popular research problems in social influence analysis such as influence maximization, rumor blocking, rumor source detection, and multiple social influence competing.
This book constitutes the proceedings of the 16th International Conference on Algorithmic Aspects in Information and Management, AAIM 2022, which was held online during August 13-14, 2022. The conference was originally planned to take place in Guangzhou, China, but changed to a virtual event due to the COVID-19 pandemic.The 41 regular papers included in this book were carefully reviewed and selected from 59 submissions.
This two volume set LNCS 9642 and LNCS 9643 constitutes the refereed proceedings of the 21st International Conference on Database Systems for Advanced Applications, DASFAA 2016, held in Dallas, TX, USA, in April 2016. The 61 full papers presented were carefully reviewed and selected from a total of 183 submissions. The papers cover the following topics: crowdsourcing, data quality, entity identification, data mining and machine learning, recommendation, semantics computing and knowledge base, textual data, social networks, complex queries, similarity computing, graph databases, and miscellaneous, advanced applications.
This two volume set LNCS 9642 and LNCS 9643 constitutes the refereed proceedings of the 21st International Conference on Database Systems for Advanced Applications, DASFAA 2016, held in Dallas, TX, USA, in April 2016. The 61 full papers presented were carefully reviewed and selected from a total of 183 submissions. The papers cover the following topics: crowdsourcing, data quality, entity identification, data mining and machine learning, recommendation, semantics computing and knowledge base, textual data, social networks, complex queries, similarity computing, graph databases, and miscellaneous, advanced applications.
This book constitutes the refereed proceedings of the 9th International Conference on Combinatorial Optimization and Applications, COCOA 2015, held in Houston, TX, USA, in December 2015. The 59 full papers included in the book were carefully reviewed and selected from 125 submissions. Topics covered include classic combinatorial optimization; geometric optimization; network optimization; applied optimization; complexity and game; and optimization in graphs.
|
You may like...
Mission Impossible 6: Fallout
Tom Cruise, Henry Cavill, …
Blu-ray disc
(1)
Maze Runner: Chapter II - The Scorch…
Thomas Brodie-Sangster, Nathalie Emmanuel, …
Blu-ray disc
R32
Discovery Miles 320
|