![]() |
![]() |
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
Life on Earth is critically dependent upon the continuous cycling of water between oceans, continents and the atmosphere. Precipitation (including rain, snow, and hail) is the primary mechanism for transporting water from the atmosphere back to the Earth s surface. It is also the key physical process that links aspects of climate, weather, and the global hydrological cycle. Changes in precipitation regimes and the frequency of extreme weather events, such as floods, droughts, severe ice/snow storms, monsoon fluctuations and hurricanes are of great potential importance to life on the planet. One of the factors that could contribute to precipitation modification is aerosol pollution from various sources such as urban air pollution and biomass burning. Natural and anthropogenic changes in atmospheric aerosols might have important implications for precipitation by influencing the hydrological cycle, which in turn could feed back to climate changes. From an Earth Science perspective, a key question is how changes expected in climate will translate into changes in the hydrological cycle, and what trends may be expected in the future. We require a much better understanding and hence predictive capability of the moisture and energy storages and exchanges among the Earth s atmosphere, oceans, continents and biological systems. This book is a review of our knowledge of the relationship between aerosols and precipitation reaching the Earth's surface and it includes a list of recommendations that could help to advance our knowledge in this area."
This book focuses on the dynamics of clouds and of precipitating
mesoscale meteorological systems. Clouds and precipitating
mesoscale systems represent some of the most important and
scientifically exciting weather systems in the world. These are the
systems that produce torrential rains, severe winds including
downburst and tornadoes, hail, thunder and lightning, and major
snow storms. Forecasting such storms represents a major challenge
since they are too small to be adequately resolved by conventional
observing networks and numerical prediction models. * Provides a complete treatment of clouds integrating the analysis of air motions with cloud structure, microphysics, and precipitation mechanics * Describes and explains the basic types of clouds and cloud systems that occur in the atmosphere-fog, stratus, stratocumulus, altocumulus, altostratus, cirrus, thunderstorms, tornadoes, waterspouts, orographically induced clouds, mesoscale convection complexes, hurricanes, fronts, and extratropical cyclones * Summarizes the fundamentals, both observational and theoretical, of atmospheric dynamics, thermodynamics, cloud microphysics, and radar meteorology, allowing each type of cloud to be examined in depth * Integrates the latest field observations, numerical model simulations, and theory * Supplies a theoretical treatment suitable for the advanced undergraduate or graduate level, as well as post-graduate "
This 2007 edition of Human Impacts on Weather and Climate examines the scientific and political debates surrounding anthropogenic impacts on the Earth's climate and presents the most recent theories, data and modeling studies. The book discusses the concepts behind deliberate human attempts to modify the weather through cloud seeding, as well as inadvertent modification of weather and climate on the regional scale. The natural variability of weather and climate greatly complicates our ability to determine a clear cause-and-effect relationship to human activity. The authors describe the basic theories and critique them in simple and accessible terms. This fully revised edition will be a valuable resource for undergraduate and graduate courses in atmospheric and environmental science, and will also appeal to policy makers and general readers interested in how humans are affecting the global climate.
|
![]() ![]() You may like...
|