0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Fluid Transport in Nanoporous Materials - Proceedings of the NATO Advanced Study Institute, held in La Colle sur Loup, France,... Fluid Transport in Nanoporous Materials - Proceedings of the NATO Advanced Study Institute, held in La Colle sur Loup, France, 16-28 June 2003 (Hardcover, 2006 ed.)
Wm. Curtis Conner, Jacques Fraissard
R4,717 Discovery Miles 47 170 Ships in 10 - 15 working days

The last several years have seen a dramatic increase in the synthesis of new nanoporous materials. The most promising include molecular sieves which are being developed as inorganic or polymeric systems with 0. 3-30nm in pore dimensions. These nanoporous solids have a broad spectrum of applications in chemical and biochemical processes. The unique applications of molecular sieves are based on their sorption and transport selectivity. Yet, the transport processes in nanoporous systems are not understood well. At the same time, the theoretical capabilities have increased exponentially catalyzed by increases in computational capabilities. The interactions between a diffusing species and the host solid are being studied with increasing details and realism. Further, in situ experimental techniques have been developed which give an understanding of the interactions between diffusing species and nanoporous solids that was not available even a few years ago. The time was ripe to bring together these areas of common interest and study to understand what is known and what has yet to be determined concerning transport in nanoporous solids. Molecular sieves are playing an increasing role in a broad range of industrial petrochemical and biological processes. These include shape-selective separations and catalysis as well as sensors and drug delivery. Molecular sieves are made from inorganic as well as organic solids, e. g. , polymers. They can be employed in packed beds, as membranes and as barrier materials. Initially, the applications of molecular sieves were dominated by the use of zeolites.

Fluid Transport in Nanoporous Materials - Proceedings of the NATO Advanced Study Institute, held in La Colle sur Loup, France,... Fluid Transport in Nanoporous Materials - Proceedings of the NATO Advanced Study Institute, held in La Colle sur Loup, France, 16-28 June 2003 (Paperback, 2006 ed.)
Wm. Curtis Conner, Jacques Fraissard
R4,913 Discovery Miles 49 130 Ships in 10 - 15 working days

The last several years have seen a dramatic increase in the synthesis of new nanoporous materials. The most promising include molecular sieves which are being developed as inorganic or polymeric systems with 0. 3-30nm in pore dimensions. These nanoporous solids have a broad spectrum of applications in chemical and biochemical processes. The unique applications of molecular sieves are based on their sorption and transport selectivity. Yet, the transport processes in nanoporous systems are not understood well. At the same time, the theoretical capabilities have increased exponentially catalyzed by increases in computational capabilities. The interactions between a diffusing species and the host solid are being studied with increasing details and realism. Further, in situ experimental techniques have been developed which give an understanding of the interactions between diffusing species and nanoporous solids that was not available even a few years ago. The time was ripe to bring together these areas of common interest and study to understand what is known and what has yet to be determined concerning transport in nanoporous solids. Molecular sieves are playing an increasing role in a broad range of industrial petrochemical and biological processes. These include shape-selective separations and catalysis as well as sensors and drug delivery. Molecular sieves are made from inorganic as well as organic solids, e. g. , polymers. They can be employed in packed beds, as membranes and as barrier materials. Initially, the applications of molecular sieves were dominated by the use of zeolites.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Renaissance
Beyonce CD  (3)
R255 R215 Discovery Miles 2 150
Microsoft Xbox Series X Console (1TB)
 (21)
R14,999 Discovery Miles 149 990
Searching For Papa's Secret In Hitler's…
Egonne Roth Paperback R295 R231 Discovery Miles 2 310
Dog's Life Ballistic Nylon Waterproof…
R999 R514 Discovery Miles 5 140
Wagworld Leafy Mat - Fleece…
 (1)
R549 R367 Discovery Miles 3 670
Crystal Aire Concentrate - Ocean Mist…
R199 Discovery Miles 1 990
Miss Peregrine's Home for Peculiar…
Eva Green, Asa Butterfield, … Blu-ray disc  (1)
R38 Discovery Miles 380
Fine Living E-Table (Black | White)
 (7)
R319 R199 Discovery Miles 1 990
Lucky Metal Cut Throat Razer Carrier
R30 R18 Discovery Miles 180
The World's Worst Children
David Walliams Paperback R215 R99 Discovery Miles 990

 

Partners