0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage - From... Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage - From Theory to Engineering to Practice (Hardcover, 1st ed. 2016)
Alejandro A. Franco, Marie-Liesse Doublet, Wolfgang G. Bessler
R3,773 R3,478 Discovery Miles 34 780 Save R295 (8%) Ships in 12 - 17 working days

The aim of this book is to review innovative physical multiscale modeling methods which numerically simulate the structure and properties of electrochemical devices for energy storage and conversion. Written by world-class experts in the field, it revisits concepts, methodologies and approaches connecting ab initio with micro-, meso- and macro-scale modeling of components and cells. It also discusses the major scientific challenges of this field, such as that of lithium-ion batteries. This book demonstrates how fuel cells and batteries can be brought together to take advantage of well-established multi-scale physical modeling methodologies to advance research in this area. This book also highlights promising capabilities of such approaches for inexpensive virtual experimentation. In recent years, electrochemical systems such as polymer electrolyte membrane fuel cells, solid oxide fuel cells, water electrolyzers, lithium-ion batteries and supercapacitors have attracted much attention due to their potential for clean energy conversion and as storage devices. This has resulted in tremendous technological progress, such as the development of new electrolytes and new engineering designs of electrode structures. However, these technologies do not yet possess all the necessary characteristics, especially in terms of cost and durability, to compete within the most attractive markets. Physical multiscale modeling approaches bridge the gap between materials' atomistic and structural properties and the macroscopic behavior of a device. They play a crucial role in optimizing the materials and operation in real-life conditions, thereby enabling enhanced cell performance and durability at a reduced cost. This book provides a valuable resource for researchers, engineers and students interested in physical modelling, numerical simulation, electrochemistry and theoretical chemistry.

Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage - From... Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage - From Theory to Engineering to Practice (Paperback, Softcover reprint of the original 1st ed. 2016)
Alejandro A. Franco, Marie-Liesse Doublet, Wolfgang G. Bessler
R3,640 Discovery Miles 36 400 Ships in 10 - 15 working days

The aim of this book is to review innovative physical multiscale modeling methods which numerically simulate the structure and properties of electrochemical devices for energy storage and conversion. Written by world-class experts in the field, it revisits concepts, methodologies and approaches connecting ab initio with micro-, meso- and macro-scale modeling of components and cells. It also discusses the major scientific challenges of this field, such as that of lithium-ion batteries. This book demonstrates how fuel cells and batteries can be brought together to take advantage of well-established multi-scale physical modeling methodologies to advance research in this area. This book also highlights promising capabilities of such approaches for inexpensive virtual experimentation. In recent years, electrochemical systems such as polymer electrolyte membrane fuel cells, solid oxide fuel cells, water electrolyzers, lithium-ion batteries and supercapacitors have attracted much attention due to their potential for clean energy conversion and as storage devices. This has resulted in tremendous technological progress, such as the development of new electrolytes and new engineering designs of electrode structures. However, these technologies do not yet possess all the necessary characteristics, especially in terms of cost and durability, to compete within the most attractive markets. Physical multiscale modeling approaches bridge the gap between materials' atomistic and structural properties and the macroscopic behavior of a device. They play a crucial role in optimizing the materials and operation in real-life conditions, thereby enabling enhanced cell performance and durability at a reduced cost. This book provides a valuable resource for researchers, engineers and students interested in physical modelling, numerical simulation, electrochemistry and theoretical chemistry.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Loot
Nadine Gordimer Paperback  (2)
R205 R168 Discovery Miles 1 680
Cadac 47cm Paella Pan
R1,215 Discovery Miles 12 150
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn Paperback R280 R199 Discovery Miles 1 990
Slippers
R57 Discovery Miles 570
Cooking Lekka - Comforting Recipes For…
Thameenah Daniels Paperback R290 Discovery Miles 2 900
600ml Shake Infuser Water Bottle
R75 Discovery Miles 750
Fly Repellent ShooAway (White)(4 Pack)
R1,396 R1,076 Discovery Miles 10 760
Genuine Leather Wallet With Clip Closure…
R299 R252 Discovery Miles 2 520
Snyman's Criminal Law
Kallie Snyman, Shannon Vaughn Hoctor Paperback R1,245 Discovery Miles 12 450
Zap! Air Dry Pottery Kit
Kit R250 R195 Discovery Miles 1 950

 

Partners