|
Showing 1 - 5 of
5 matches in All Departments
Stochastic geometry deals with models for random geometric
structures. Its early beginnings are found in playful geometric
probability questions, and it has vigorously developed during
recent decades, when an increasing number of real-world
applications in various sciences required solid mathematical
foundations. Integral geometry studies geometric mean values with
respect to invariant measures and is, therefore, the appropriate
tool for the investigation of random geometric structures that
exhibit invariance under translations or motions. Stochastic and
Integral Geometry provides the mathematically oriented reader with
a rigorous and detailed introduction to the basic stationary models
used in stochastic geometry random sets, point processes, random
mosaics and to the integral geometry that is needed for their
investigation. The interplay between both disciplines is
demonstrated by various fundamental results. A chapter on selected
problems about geometric probabilities and an outlook to
non-stationary models are included, and much additional information
is given in the section notes."
This book provides a self-contained introduction to convex geometry
in Euclidean space. After covering the basic concepts and results,
it develops Brunn-Minkowski theory, with an exposition of mixed
volumes, the Brunn-Minkowski inequality, and some of its
consequences, including the isoperimetric inequality. Further
central topics are then treated, such as surface area measures,
projection functions, zonoids, and geometric valuations. Finally,
an introduction to integral-geometric formulas in Euclidean space
is provided. The numerous exercises and the supplementary material
at the end of each section form an essential part of the book.
Convexity is an elementary and natural concept. It plays a key role
in many mathematical fields, including functional analysis,
optimization, probability theory, and stochastic geometry. Paving
the way to the more advanced and specialized literature, the
material will be accessible to students in the third year and can
be covered in one semester.
Stochastic geometry deals with models for random geometric
structures. Its early beginnings are found in playful geometric
probability questions, and it has vigorously developed during
recent decades, when an increasing number of real-world
applications in various sciences required solid mathematical
foundations. Integral geometry studies geometric mean values with
respect to invariant measures and is, therefore, the appropriate
tool for the investigation of random geometric structures that
exhibit invariance under translations or motions. Stochastic and
Integral Geometry provides the mathematically oriented reader with
a rigorous and detailed introduction to the basic stationary models
used in stochastic geometry random sets, point processes, random
mosaics and to the integral geometry that is needed for their
investigation. The interplay between both disciplines is
demonstrated by various fundamental results. A chapter on selected
problems about geometric probabilities and an outlook to
non-stationary models are included, and much additional information
is given in the section notes."
This book provides a self-contained introduction to convex geometry
in Euclidean space. After covering the basic concepts and results,
it develops Brunn-Minkowski theory, with an exposition of mixed
volumes, the Brunn-Minkowski inequality, and some of its
consequences, including the isoperimetric inequality. Further
central topics are then treated, such as surface area measures,
projection functions, zonoids, and geometric valuations. Finally,
an introduction to integral-geometric formulas in Euclidean space
is provided. The numerous exercises and the supplementary material
at the end of each section form an essential part of the book.
Convexity is an elementary and natural concept. It plays a key role
in many mathematical fields, including functional analysis,
optimization, probability theory, and stochastic geometry. Paving
the way to the more advanced and specialized literature, the
material will be accessible to students in the third year and can
be covered in one semester.
Die von Blaschke begriindete Integralgeometrie handelt von
beweglichen Fi- guren im Raum und von invarianten Integralen, die
sich bei ihnen bilden lassen. Dieses Zitat aus Hadwiger [1957] (S.
225) beschreibt recht gut die wesentlichen Elemente der
Integralgeometrie: Es geht urn bewegte Figuren, also der Operation
einer Gruppe unterworfene geometrische Objekte, und urn invariante
Mittelwerte im Zusammenhang mit solchen bewegten Figuren.
Integralgeometrie ist also ein Teilgebiet der Geometrie, das sich
mit der Bestimmung und Anwendung von Mittelwerten geometrisch
definierter Funk- tionen beziiglich invarianter Maf3e befaBt. Zu
den Grundlagen der Integral- geometrie gehoren daher einerseits
Teile der Theorie invarianter Maf3e auf topologischen Gruppen und
homogenen Raumen, andererseits gewisse Ge- biete aus der Geometrie
der Punktmengen, wie etwa der Polyeder, konvexen Mengen oder
differenzierbaren Untermannigfaltigkeiten. Urspriinglich aus
Fragestellungen iiber geometrische Wahrscheinlichkei- ten
entstanden und von Blaschke, Chern, Hadwiger, Santal6 und anderen
ab 1935 entwickelt, hat sich die Integralgeometrie in jiingerer
Zeit als wichtiges Hilfsmittel in der Stochastischen Geometrie und
deren Anwendungsgebieten (Stereologie, Bildanalyse, raumliche
Statistik) erwiesen. Dies hat zu neuen Resultaten gefiihrt, zu
Verallgemeinerungen klassischer integralgeometrischer Formeln, aber
auch zu andersartigen Zugangen und zu neuen Gesichtspunk- ten. Das
vorliegende Buch ist sowohl klassischen Ergebnissen der
Integralgeo- metrie gewidmet als auch neueren Entwicklungen. Es
unterscheidet sich in mehrfacher Hinsicht wesentlich von den
vorhandenen Monographien.
|
|