![]() |
![]() |
Your cart is empty |
||
Showing 1 - 2 of 2 matches in All Departments
Multimodal Behavioral Analysis in the Wild: Advances and Challenges presents the state-of- the-art in behavioral signal processing using different data modalities, with a special focus on identifying the strengths and limitations of current technologies. The book focuses on audio and video modalities, while also emphasizing emerging modalities, such as accelerometer or proximity data. It covers tasks at different levels of complexity, from low level (speaker detection, sensorimotor links, source separation), through middle level (conversational group detection, addresser and addressee identification), and high level (personality and emotion recognition), providing insights on how to exploit inter-level and intra-level links. This is a valuable resource on the state-of-the- art and future research challenges of multi-modal behavioral analysis in the wild. It is suitable for researchers and graduate students in the fields of computer vision, audio processing, pattern recognition, machine learning and social signal processing.
Variational autoencoders (VAEs) are powerful deep generative models widely used to represent high-dimensional complex data through a low-dimensional latent space learned in an unsupervised manner. In this monograph the authors introduce and discuss a general class of models, called dynamical variational autoencoders (DVAEs), which extend VAEs to model temporal vector sequences. In doing so the authors provide:* a formal definition of the general class of DVAEs* a detailed and complete technical description of seven DVAE models* a rapid overview of other DVAE models presented in the recent literature* discussion of the recent developments in DVAEs in relation to the history and technical background of the classical models DVAEs are built on* a quantitative benchmark of the selected DVAE models* a discussion to put the DVAE class of models into perspectiveThis monograph is a comprehensive review of the current state-of-the-art in DVAEs. It gives the reader an accessible summary of the technical aspects of the different DVAE models, their connections with classicalmodels, their cross-connections, and their unification in the DVAE class in a concise, easy-to-read book.The authors have put considerable effort into unifying the terminology and notation used across the various models which all students, researchers and practitioners working in machine learning will find an invaluable resource.
|
![]() ![]() You may like...
Avengers: 4-Movie Collection - The…
Robert Downey Jr., Chris Evans, …
Blu-ray disc
R589
Discovery Miles 5 890
|