Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
Taking another lesson from nature, the latest advances in image processing technology seek to combine image data from several diverse types of sensors in order to obtain a more accurate view of the scene: very much the same as we rely on our five senses. Multi-Sensor Image Fusion and Its Applications is the first text dedicated to the theory and practice of the registration and fusion of image data, covering such approaches as statistical methods, color-related techniques, model-based methods, and visual information display strategies. After a review of state-of-the-art image fusion techniques, the book provides an overview of fusion algorithms and fusion performance evaluation. The following chapters explore recent progress and practical applications of the proposed techniques to solving problems in such areas as medical diagnosis, surveillance and biometric systems, remote sensing, nondestructive evaluation, blurred image restoration, and image quality assessment. Recognized leaders from industry and academia contribute the chapters, reflecting the latest research trends and providing useful algorithms to aid implementation. Supplying a 28-page full-color insert, Multi-Sensor Image Fusion and Its Applications clearly demonstrates the benefits and possibilities of this revolutionary development. It provides a solid knowledge base for applying these cutting-edge techniques to new challenges and creating future advances.
This book constitutes the refereed joint proceedings of the 4th International Workshop on Multimodal Brain Image Analysis, MBAI 2019, and the 7th International Workshop on Mathematical Foundations of Computational Anatomy, MFCA 2019, held in conjunction with the 22nd International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2019, in Shenzhen, China, in October 2019. The 16 full papers presented at MBAI 2019 and the 7 full papers presented at MFCA 2019 were carefully reviewed and selected. The MBAI papers intend to move forward the state of the art in multimodal brain image analysis, in terms of analysis methodologies, algorithms, software systems, validation approaches, benchmark datasets, neuroscience, and clinical applications. The MFCA papers are devoted to statistical and geometrical methods for modeling the variability of biological shapes. The goal is to foster the interactions between the mathematical community around shapes and the MICCAI community around computational anatomy applications.
Over the past 15 years, there has been a growing need in the medical image computing community for principled methods to process nonlinear geometric data. Riemannian geometry has emerged as one of the most powerful mathematical and computational frameworks for analyzing such data. Riemannian Geometric Statistics in Medical Image Analysis is a complete reference on statistics on Riemannian manifolds and more general nonlinear spaces with applications in medical image analysis. It provides an introduction to the core methodology followed by a presentation of state-of-the-art methods. Beyond medical image computing, the methods described in this book may also apply to other domains such as signal processing, computer vision, geometric deep learning, and other domains where statistics on geometric features appear. As such, the presented core methodology takes its place in the field of geometric statistics, the statistical analysis of data being elements of nonlinear geometric spaces. The foundational material and the advanced techniques presented in the later parts of the book can be useful in domains outside medical imaging and present important applications of geometric statistics methodology Content includes: The foundations of Riemannian geometric methods for statistics on manifolds with emphasis on concepts rather than on proofs Applications of statistics on manifolds and shape spaces in medical image computing Diffeomorphic deformations and their applications As the methods described apply to domains such as signal processing (radar signal processing and brain computer interaction), computer vision (object and face recognition), and other domains where statistics of geometric features appear, this book is suitable for researchers and graduate students in medical imaging, engineering and computer science.
This book constitutes the refereed joint proceedings of the First International Workshop on Graphs in Biomedical Image Analysis, GRAIL 2017, the 6th International Workshop on Mathematical Foundations of Computational Anatomy, MFCA 2017, and the Third International Workshop on Imaging Genetics, MICGen 2017, held in conjunction with the 20th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2017, in Quebec City, QC, Canada, in September 2017. The 7 full papers presented at GRAIL 2017, the 10 full papers presented at MFCA 2017, and the 5 full papers presented at MICGen 2017 were carefully reviewed and selected. The GRAIL papers cover a wide range of graph based medical image analysis methods and applications, including probabilistic graphical models, neuroimaging using graph representations, machine learning for diagnosis prediction, and shape modeling. The MFCA papers deal with theoretical developments in non-linear image and surface registration in the context of computational anatomy. The MICGen papers cover topics in the field of medical genetics, computational biology and medical imaging.
This book constitutes the thoroughly refereed post-conference proceedings of the Third International Workshop on Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data, STIA 2014, held in conjunction with MICCAI 2014 in Boston, MA, USA, in September 2014. The 7 papers presented in this volume were carefully reviewed and selected from 15 submissions. They are organized in topical sections named: longitudinal registration and shape modeling, longitudinal modeling, reconstruction from longitudinal data, and 4D image processing.
|
You may like...
Labour Relations in South Africa
Dr Hanneli Bendeman, Dr Bronwyn Dworzanowski-Venter
Paperback
|