![]() |
![]() |
Your cart is empty |
||
Showing 1 - 2 of 2 matches in All Departments
This book provides comprehensive information on the history and status quo of a new research field, which we refer to as Engineering Optics 2.0. The content covers both the theoretical basis and the engineering aspects in connection with various applications. The field of Engineering Optics employs optical theories to practical applications in a broad range of areas. However, the foundation of traditional Engineering Optics was formed several hundred years ago, and the field has developed only very gradually. With technological innovations in both the fabrication and characterization of microstructures, the past few decades have witnessed many groundbreaking changes to the bases of optics, including the generalizing of refraction, reflection, diffraction, radiation and absorption theories. These new theories enable us to break through the barriers in traditional optical technologies, yielding revolutionary advances in traditional optical systems such as microscopes, telescopes and lithography systems.
This book offers the first comprehensive introduction to the optical properties of the catenary function, and includes more than 200 figures. Related topics addressed here include the photonic spin Hall effect in inhomogeneous anisotropic materials, coupling of evanescent waves in complex structures, etc. After familiarizing readers with these new physical phenomena, the book highlights their applications in plasmonic nanolithography, flat optical elements, perfect electromagnetic absorbers and polarization converters. The book will appeal to a wide range of readers: while researchers will find new inspirations for historical studies combining mechanics, mathematics, and optics, students will gain a wealth of multidisciplinary knowledge required in many related areas. In fact, the catenary function was deemed to be a "true mathematical and mechanical form" in architecture by Robert Hooke in the 1670s. The discovery of the mathematical form of catenaries is attributed to Gottfried Leibniz, Christiaan Huygens and Johann Bernoulli in 1691. As the founders of wave optics, however, Hooke and Huygens did not recognize the importance of catenaries in optics. It is only in recent decades that the link between catenaries and optics has been established.
|
![]() ![]() You may like...
This Is How It Is - True Stories From…
The Life Righting Collective
Paperback
Eat Like a Local Hanoi - Hanoi Vietnam…
Eat Like a Local, Linh Le
Paperback
R292
Discovery Miles 2 920
|