0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (1)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics (Hardcover, 1st ed. 2019): Le Lu,... Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics (Hardcover, 1st ed. 2019)
Le Lu, Xiaosong Wang, Gustavo Carneiro, Lin Yang
R3,166 R2,208 Discovery Miles 22 080 Save R958 (30%) Ships in 12 - 17 working days

This book reviews the state of the art in deep learning approaches to high-performance robust disease detection, robust and accurate organ segmentation in medical image computing (radiological and pathological imaging modalities), and the construction and mining of large-scale radiology databases. It particularly focuses on the application of convolutional neural networks, and on recurrent neural networks like LSTM, using numerous practical examples to complement the theory. The book's chief features are as follows: It highlights how deep neural networks can be used to address new questions and protocols, and to tackle current challenges in medical image computing; presents a comprehensive review of the latest research and literature; and describes a range of different methods that employ deep learning for object or landmark detection tasks in 2D and 3D medical imaging. In addition, the book examines a broad selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to text and image deep embedding for a large-scale chest x-ray image database; and discusses how deep learning relational graphs can be used to organize a sizable collection of radiology findings from real clinical practice, allowing semantic similarity-based retrieval.The intended reader of this edited book is a professional engineer, scientist or a graduate student who is able to comprehend general concepts of image processing, computer vision and medical image analysis. They can apply computer science and mathematical principles into problem solving practices. It may be necessary to have a certain level of familiarity with a number of more advanced subjects: image formation and enhancement, image understanding, visual recognition in medical applications, statistical learning, deep neural networks, structured prediction and image segmentation.

Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics (Paperback, 1st ed. 2019): Le Lu,... Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics (Paperback, 1st ed. 2019)
Le Lu, Xiaosong Wang, Gustavo Carneiro, Lin Yang
R4,521 Discovery Miles 45 210 Ships in 10 - 15 working days

This book reviews the state of the art in deep learning approaches to high-performance robust disease detection, robust and accurate organ segmentation in medical image computing (radiological and pathological imaging modalities), and the construction and mining of large-scale radiology databases. It particularly focuses on the application of convolutional neural networks, and on recurrent neural networks like LSTM, using numerous practical examples to complement the theory. The book's chief features are as follows: It highlights how deep neural networks can be used to address new questions and protocols, and to tackle current challenges in medical image computing; presents a comprehensive review of the latest research and literature; and describes a range of different methods that employ deep learning for object or landmark detection tasks in 2D and 3D medical imaging. In addition, the book examines a broad selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to text and image deep embedding for a large-scale chest x-ray image database; and discusses how deep learning relational graphs can be used to organize a sizable collection of radiology findings from real clinical practice, allowing semantic similarity-based retrieval.The intended reader of this edited book is a professional engineer, scientist or a graduate student who is able to comprehend general concepts of image processing, computer vision and medical image analysis. They can apply computer science and mathematical principles into problem solving practices. It may be necessary to have a certain level of familiarity with a number of more advanced subjects: image formation and enhancement, image understanding, visual recognition in medical applications, statistical learning, deep neural networks, structured prediction and image segmentation.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Loot
Nadine Gordimer Paperback  (2)
R383 R310 Discovery Miles 3 100
Nintendo Labo Customisation Set for…
R246 R114 Discovery Miles 1 140
Magic Mike's Last Dance
Channing Tatum, Salma Hayek-Pinault DVD R93 Discovery Miles 930
The Folk Of The Air: Trilogy - The Cruel…
Holly Black Paperback  (3)
R648 R586 Discovery Miles 5 860
Sluggem Pellets (500g)
R234 Discovery Miles 2 340
Mercury: Act 1
Imagine Dragons CD R88 R64 Discovery Miles 640
The Garden Within - Where the War with…
Anita Phillips Paperback R329 R239 Discovery Miles 2 390
Mousepad with Gel Wrist Support
R70 Discovery Miles 700
Loot
Nadine Gordimer Paperback  (2)
R383 R310 Discovery Miles 3 100
Loot
Nadine Gordimer Paperback  (2)
R383 R310 Discovery Miles 3 100

 

Partners