Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
This book presents a systematic introduction to particle damping technologies, which can be used to effectively mitigate seismic-induced and wind-induced vibration in various structures. Further, it offers comprehensive information on the latest research advances, e.g. a refined simulation model based on the discrete element method and a simplified simulation model based on equivalent principles. It then intensively studies the vibration attenuation effects of particle dampers subjected to different dynamic loads; in this context, the book proposes a new damping mechanism and "global'' measures that can be used to evaluate damping performance. Moreover, the book uses the shaking table test and wind tunnel test to verify the proposed simulation methods, and their satisfactory damping performance is confirmed. To facilitate the practical engineering application of this technology, optimization design guidelines for particle impact dampers are also provided. In closing, the book offers a preliminary exploration of semi-active particle damping technology, which holds great potential for extension to other applications in which the primary system is subjected to non-stationary excitations.
Retrofitting of building structures, including maintenance, rehabilitation, and strengthening, is not only an important issue in urban construction and management, but also a frequent problem to structural engineers in property management disciplines. Based on the contributors' hands-on experience, Retrofitting Design of Building Structures covers structural retrofitting practices, the basic principles of structural analysis and design, and various innovatively-used structural codes for the design, assessment, and retrofitting of building structures using newly-developed technologies worldwide. Beginning with the procedure of structural retrofitting, this book gradually introduces the significance of structural retrofitting; the inspection methods for structural materials, structural deformation, and damages; retrofitting design methods and construction requirements of various structural systems; and practical examples of structural retrofitting design and construction. In the introduction of various examples, it emphasizes not only conceptual design, but also constructional procedure design, so that a structural retrofitting design work should be completed by both structural analysis and detailed constructional measures. The book provides a complete resource for experienced professionals as well as teachers and students.
Retrofitting of building structures, including maintenance, rehabilitation, and strengthening, is not only an important issue in urban construction and management, but also a frequent problem to structural engineers in property management disciplines. Based on the contributors' hands-on experience, Retrofitting Design of Building Structures covers structural retrofitting practices, the basic principles of structural analysis and design, and various innovatively-used structural codes for the design, assessment, and retrofitting of building structures using newly-developed technologies worldwide. Beginning with the procedure of structural retrofitting, this book gradually introduces the significance of structural retrofitting; the inspection methods for structural materials, structural deformation, and damages; retrofitting design methods and construction requirements of various structural systems; and practical examples of structural retrofitting design and construction. In the introduction of various examples, it emphasizes not only conceptual design, but also constructional procedure design, so that a structural retrofitting design work should be completed by both structural analysis and detailed constructional measures. The book provides a complete resource for experienced professionals as well as teachers and students.
This book presents a systematic introduction to particle damping technologies, which can be used to effectively mitigate seismic-induced and wind-induced vibration in various structures. Further, it offers comprehensive information on the latest research advances, e.g. a refined simulation model based on the discrete element method and a simplified simulation model based on equivalent principles. It then intensively studies the vibration attenuation effects of particle dampers subjected to different dynamic loads; in this context, the book proposes a new damping mechanism and "global'' measures that can be used to evaluate damping performance. Moreover, the book uses the shaking table test and wind tunnel test to verify the proposed simulation methods, and their satisfactory damping performance is confirmed. To facilitate the practical engineering application of this technology, optimization design guidelines for particle impact dampers are also provided. In closing, the book offers a preliminary exploration of semi-active particle damping technology, which holds great potential for extension to other applications in which the primary system is subjected to non-stationary excitations.
With rapid urbanization in developing countries and the emergence of smart systems and integrated intelligent devices, the new generation of infrastructure will be smarter and more efficient. However, due to natural and anthropomorphic hazards, as well as the adverse impact of climate change, civil infrastructure systems are increasingly vulnerable. Therefore, future-proofing and designing resilience into infrastructure is one of the biggest challenges facing the industry and governments in all developing and industrialized societies. This book provides a comprehensive overview of infrastructure resiliency, new developments in this emerging field and its scopes, including ecology and sustainability, and the challenges involved in building more resilient civil infrastructure systems. Moreover, it introduces a strategic roadmap for effective and efficient methods needed for modeling, designing, and assessing resiliency. Features: Includes contributions from internationally recognized scholars in the emerging field of infrastructure resilience. Covers a broad range of topics in infrastructure resilience such as disaster assessment, civil infrastructure and lifeline systems, natural hazard mitigation, and seismic protection. Includes practical global case studies and leading-edge research from several countries. Presents an interdisciplinary approach in addressing the challenges in the emerging field of infrastructure resilience Resilience of Critical Infrastructure Systems: Emerging Developments and Future Challenges serves as a valuable resource for practicing professionals, researchers, and advanced students seeking practical, forward-looking guidance.
|
You may like...
|