Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
Many organizations have an urgent need of mining their multiple databases inherently distributed in branches (distributed data). In particular, as the Web is rapidly becoming an information flood, individuals and organizations can take into account low-cost information and knowledge on the Internet when making decisions. How to efficiently identify quality knowledge from different data sources has become a significant challenge. This challenge has attracted a great many researchers including the au thors who have developed a local pattern analysis, a new strategy for dis covering some kinds of potentially useful patterns that cannot be mined in traditional multi-database mining techniques. Local pattern analysis deliv ers high-performance pattern discovery from multiple databases. There has been considerable progress made on multi-database mining in such areas as hierarchical meta-learning, collective mining, database classification, and pe culiarity discovery. While these techniques continue to be future topics of interest concerning multi-database mining, this book focuses on these inter esting issues under the framework of local pattern analysis. The book is intended for researchers and students in data mining, dis tributed data analysis, machine learning, and anyone else who is interested in multi-database mining. It is also appropriate for use as a text supplement for broader courses that might also involve knowledge discovery in databases and data mining."
Identifying some of the most influential algorithms that are widely used in the data mining community, The Top Ten Algorithms in Data Mining provides a description of each algorithm, discusses its impact, and reviews current and future research. Thoroughly evaluated by independent reviewers, each chapter focuses on a particular algorithm and is written by either the original authors of the algorithm or world-class researchers who have extensively studied the respective algorithm. The book concentrates on the following important algorithms: C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. Examples illustrate how each algorithm works and highlight its overall performance in a real-world application. The text covers key topics?including classification, clustering, statistical learning, association analysis, and link mining?in data mining research and development as well as in data mining, machine learning, and artificial intelligence courses. By naming the leading algorithms in this field, this book encourages the use of data mining techniques in a broader realm of real-world applications. It should inspire more data mining researchers to further explore the impact and novel research issues of these algorithms.
Many organizations have an urgent need of mining their multiple databases inherently distributed in branches (distributed data). In particular, as the Web is rapidly becoming an information flood, individuals and organizations can take into account low-cost information and knowledge on the Internet when making decisions. How to efficiently identify quality knowledge from different data sources has become a significant challenge. This challenge has attracted a great many researchers including the au thors who have developed a local pattern analysis, a new strategy for dis covering some kinds of potentially useful patterns that cannot be mined in traditional multi-database mining techniques. Local pattern analysis deliv ers high-performance pattern discovery from multiple databases. There has been considerable progress made on multi-database mining in such areas as hierarchical meta-learning, collective mining, database classification, and pe culiarity discovery. While these techniques continue to be future topics of interest concerning multi-database mining, this book focuses on these inter esting issues under the framework of local pattern analysis. The book is intended for researchers and students in data mining, dis tributed data analysis, machine learning, and anyone else who is interested in multi-database mining. It is also appropriate for use as a text supplement for broader courses that might also involve knowledge discovery in databases and data mining."
This volume constitutes the thoroughly refereed conference proceedings of the 25th International Conference on Industrial Engineering and Other Applications of Applied Intelligend Systems, IEA/AIE 2012, held in Dalian, China, in June 2012. The total of 82 papers selected for the proceedings were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on machine learning methods; cyber-physical system for intelligent transportation applications; AI applications; evolutionary algorithms, combinatorial optimization; modeling and support of cognitive and affective human processes; natural language processing and its applications; social network and its applications; mission-critical applications and case studies of intelligent systems; AI methods; sentiment analysis for asian languages; aspects on cognitive computing and intelligent interaction; spatio-temporal datamining, structured learning and their applications; decision making and knowledge based systems; pattern recognition; agent based systems; decision making techniques and innovative knowledge management; machine learning applications.
The 4th International Conference on Hybrid Artificial Intelligence Systems (HAIS 2009), as the name suggests, attracted researchers who are involved in developing and applying symbolic and sub-symbolic techniques aimed at the construction of highly robust and reliable problem-solving techniques, and bringing the most relevant achievements in this field. Hybrid intelligent systems have become increasingly po- lar given their capabilities to handle a broad spectrum of real-world complex problems which come with inherent imprecision, uncertainty and vagueness, hi- dimensionality, and nonstationarity. These systems provide us with the opportunity to exploit existing domain knowledge as well as raw data to come up with promising solutions in an effective manner. Being truly multidisciplinary, the series of HAIS conferences offers an interesting research forum to present and discuss the latest th- retical advances and real-world applications in this exciting research field. This volume of Lecture Notes in Artificial Intelligence (LNAI) includes accepted papers presented at HAIS 2009 held at the University of Salamanca, Salamanca, Spain, June 2009. Since its inception, the main aim of the HAIS conferences has been to establish a broad and interdisciplinary forum for hybrid artificial intelligence systems and asso- ated learning paradigms, which are playing increasingly important roles in a large number of application areas.
This book constitutes the refereed proceedings of the Second Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD-98, held in Melbourne, Australia, in April 1998. The book presents 30 revised full papers selected from a total of 110 submissions; also included are 20 poster presentations. The papers contribute new results to all current aspects in knowledge discovery and data mining on the research level as well as on the level of systems development. Among the areas covered are machine learning, information systems, the Internet, statistics, knowledge acquisition, data visualization, software reengineering, and knowledge based systems.
|
You may like...
|