Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
This book introduces and analyzes the multigrid approach for the numerical solution of large sparse linear systems arising from the discretization of elliptic partial differential equations. Special attention is given to the powerful matrix-based-multigrid approach, which is particularly useful for problems with variable coefficients and nonsymmetric and indefinite problems. This approach applies not only to model problems on rectangular grids but also to more realistic applications with complicated grids and domains and discontinuous coefficients. Matrix-Based Multigrid can be used as a textbook in courses in numerical analysis, numerical linear algebra, and numerical PDEs at the advanced undergraduate and graduate levels in computer science, math, and applied math departments. The theory is written in simple algebraic terms and therefore requires preliminary knowledge in basic linear algebra and calculus only. Because it is self contained and includes useful exercises, the book is also suitable for self study by research students, researchers, engineers, and others interested in the numerical solution of partial differential equations.
Why learn set theory? This book provides the answer - it is interesting, and also useful! Taking a new approach and looking from a fresh perspective, the discussion flows in a friendly and transparent way, supplemented with a lot of examples and figures. This makes the theory easily comprehensible: the proofs get vivid and visual, enveloped with interesting applications for students in (applied) math, physics, and engineering. Given the theory and the applications, the book could serve as a textbook in four (undergraduate) math courses: Introduction to set theory and its application; Chaos theory and stability - a geometrical point of view; Functional analysis - Han-Banach theory; and Cryptography with quantum computing. It teaches set theory from the basics, including the axiom of choice, the well ordering theorem, and Zorn's lemma. Furthermore, it uses Cantor's set to introduce chaos theory from a geometrical point of view. Moreover, it introduces the binomial formula (and other related formulas), and uses them in quantum statistical mechanics. And finally, it uses Zorn's lemma in functional analysis, general relativity, and quantum mechanics. There are also practical applications in cryptography, error correction, quantum computing and programming.
How to see physics in its full picture? This book offers a new approach: start from math, in its simple and elegant tools: discrete math, geometry, and algebra, avoiding heavy analysis that might obscure the true picture. This will get you ready to master a few fundamental topics in physics: from Newtonian mechanics, through relativity, towards quantum mechanics.Thanks to simple math, both classical and modern physics follow and make a complete vivid picture of physics. This is an original and unified point of view to highlighting physics from a fresh pedagogical angle.Each chapter ends with a lot of relevant exercises. The exercises are an integral part of the chapter: they teach new material and are followed by complete solutions. This is a new pedagogical style: the reader takes an active part in discovering the new material, step by step, exercise by exercise.The book could be used as a textbook in undergraduate courses such as Introduction to Newtonian mechanics and special relativity, Introduction to Hamiltonian mechanics and stability, Introduction to quantum physics and chemistry, and Introduction to Lie algebras with applications in physics.
How to see physics in its full picture? This book offers a new approach: start from math, in its simple and elegant tools: discrete math, geometry, and algebra, avoiding heavy analysis that might obscure the true picture. This will get you ready to master a few fundamental topics in physics: from Newtonian mechanics, through relativity, towards quantum mechanics.Thanks to simple math, both classical and modern physics follow and make a complete vivid picture of physics. This is an original and unified point of view to highlighting physics from a fresh pedagogical angle.Each chapter ends with a lot of relevant exercises. The exercises are an integral part of the chapter: they teach new material and are followed by complete solutions. This is a new pedagogical style: the reader takes an active part in discovering the new material, step by step, exercise by exercise.The book could be used as a textbook in undergraduate courses such as Introduction to Newtonian mechanics and special relativity, Introduction to Hamiltonian mechanics and stability, Introduction to quantum physics and chemistry, and Introduction to Lie algebras with applications in physics.
Emphasizing the connection between mathematical objects and their practical C++ implementation, this book provides a comprehensive introduction to both the theory behind the objects and the C and C++ programming. Object-oriented implementation of three-dimensional meshes facilitates understanding of their mathematical nature. Requiring no prerequisites, the text covers discrete mathematics, data structures, and computational physics, including high-order discretization of nonlinear equations. Exercises and solutions make the book suitable for classroom use and a supporting website supplies downloadable code.
Matrix-Based Multigrid introduces and analyzes the multigrid approach for the numerical solution of large sparse linear systems arising from the discretization of elliptic partial differential equations. Special attention is given to the powerful matrix-based-multigrid approach, which is particularly useful for problems with variable coefficients and nonsymmetric and indefinite problems. This book can be used as a textbook in courses in numerical analysis, numerical linear algebra, and numerical PDEs at the advanced undergraduate and graduate levels in computer science, math, and applied math departments. The theory is written in simple algebraic terms and therefore requires preliminary knowledge only in basic linear algebra and calculus.
This textbook demonstrates the strong interconnections between linear algebra and group theory by presenting them simultaneously, a pedagogical strategy ideal for an interdisciplinary audience. Being approached together at the same time, these two topics complete one another, allowing students to attain a deeper understanding of both subjects. The opening chapters introduce linear algebra with applications to mechanics and statistics, followed by group theory with applications to projective geometry. Then, high-order finite elements are presented to design a regular mesh and assemble the stiffness and mass matrices in advanced applications in quantum chemistry and general relativity. This text is ideal for undergraduates majoring in engineering, physics, chemistry, computer science, or applied mathematics. It is mostly self-contained-readers should only be familiar with elementary calculus. There are numerous exercises, with hints or full solutions provided. A series of roadmaps are also provided to help instructors choose the optimal teaching approach for their discipline.
|
You may like...
|