Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
Implement state-of-the-art deep reinforcement learning algorithms using Python and its powerful libraries Key Features Implement Q-learning and Markov models with Python and OpenAI Explore the power of TensorFlow to build self-learning models Eight AI projects to gain confidence in building self-trained applications Book DescriptionReinforcement learning is one of the most exciting and rapidly growing fields in machine learning. This is due to the many novel algorithms developed and incredible results published in recent years. In this book, you will learn about the core concepts of RL including Q-learning, policy gradients, Monte Carlo processes, and several deep reinforcement learning algorithms. As you make your way through the book, you'll work on projects with datasets of various modalities including image, text, and video. You will gain experience in several domains, including gaming, image processing, and physical simulations. You'll explore technologies such as TensorFlow and OpenAI Gym to implement deep learning reinforcement learning algorithms that also predict stock prices, generate natural language, and even build other neural networks. By the end of this book, you will have hands-on experience with eight reinforcement learning projects, each addressing different topics and/or algorithms. We hope these practical exercises will provide you with better intuition and insight about the field of reinforcement learning and how to apply its algorithms to various problems in real life. What you will learn Train and evaluate neural networks built using TensorFlow for RL Use RL algorithms in Python and TensorFlow to solve CartPole balancing Create deep reinforcement learning algorithms to play Atari games Deploy RL algorithms using OpenAI Universe Develop an agent to chat with humans Implement basic actor-critic algorithms for continuous control Apply advanced deep RL algorithms to games such as Minecraft Autogenerate an image classifier using RL Who this book is forPython Reinforcement Learning Projects is for data analysts, data scientists, and machine learning professionals, who have working knowledge of machine learning techniques and are looking to build better performing, automated, and optimized deep learning models. Individuals who want to work on self-learning model projects will also find this book useful.
Apply modern reinforcement learning and deep reinforcement learning methods using Python and its powerful libraries Key Features Your entry point into the world of artificial intelligence using the power of Python An example-rich guide to master various RL and DRL algorithms Explore the power of modern Python libraries to gain confidence in building self-trained applications Book DescriptionReinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. This Learning Path will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms. The Learning Path starts with an introduction to RL followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. You'll also work on various datasets including image, text, and video. This example-rich guide will introduce you to deep RL algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will gain experience in several domains, including gaming, image processing, and physical simulations. You'll explore TensorFlow and OpenAI Gym to implement algorithms that also predict stock prices, generate natural language, and even build other neural networks. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many of the recent advancements in RL. By the end of the Learning Path, you will have all the knowledge and experience needed to implement RL and deep RL in your projects, and you enter the world of artificial intelligence to solve various real-life problems. This Learning Path includes content from the following Packt products: Hands-On Reinforcement Learning with Python by Sudharsan Ravichandiran Python Reinforcement Learning Projects by Sean Saito, Yang Wenzhuo, and Rajalingappaa Shanmugamani What you will learn Train an agent to walk using OpenAI Gym and TensorFlow Solve multi-armed-bandit problems using various algorithms Build intelligent agents using the DRQN algorithm to play the Doom game Teach your agent to play Connect4 using AlphaGo Zero Defeat Atari arcade games using the value iteration method Discover how to deal with discrete and continuous action spaces in various environments Who this book is forIf you're an ML/DL enthusiast interested in AI and want to explore RL and deep RL from scratch, this Learning Path is for you. Prior knowledge of linear algebra is expected.
|
You may like...
|