Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
In 1842 the Belgian mathematician Eugene Charles Catalan asked whether 8 and 9 are the only consecutive pure powers of non-zero integers. 160 years after, the question was answered affirmatively by the Swiss mathematician of Romanian origin Preda Mihailescu. In other words, 32 - 23 = 1 is the only solution of the equation xp - yq = 1 in integers x, y, p, q with xy 0 and p, q 2. In this book we give a complete and (almost) self-contained exposition of Mihailescu's work, which must be understandable by a curious university student, not necessarily specializing in Number Theory. We assume a very modest background:a standard university course of algebra, including basic Galois theory, and working knowledge of basic algebraic number theory.
This book presents state-of-the-art research on the distribution modulo one of sequences of integral powers of real numbers and related topics. Most of the results have never before appeared in one book and many of them were proved only during the last decade. Topics covered include the distribution modulo one of the integral powers of 3/2 and the frequency of occurrence of each digit in the decimal expansion of the square root of two. The author takes a point of view from combinatorics on words and introduces a variety of techniques, including explicit constructions of normal numbers, Schmidt's games, Riesz product measures and transcendence results. With numerous exercises, the book is ideal for graduate courses on Diophantine approximation or as an introduction to distribution modulo one for non-experts. Specialists will appreciate the inclusion of over 50 open problems and the rich and comprehensive bibliography of over 700 references.
In 1842 the Belgian mathematician Eugène Charles Catalan asked whether 8 and 9 are the only consecutive pure powers of non-zero integers. 160 years after, the question was answered affirmatively by the Swiss mathematician of Romanian origin Preda Mihăilescu. In other words, 32 – 23 = 1 is the only solution of the equation xp – yq = 1 in integers x, y, p, q with xy ≠0 and p, q ≥ 2. In this book we give a complete and (almost) self-contained exposition of Mihăilescu’s work, which must be understandable by a curious university student, not necessarily specializing in Number Theory. We assume a very modest background:a standard university course of algebra, including basic Galois theory, and working knowledge of basic algebraic number theory.
Algebraic numbers can approximate and classify any real number. Here, the author gathers together results about such approximations and classifications. Written for a broad audience, the book is accessible and self-contained, with complete and detailed proofs. Starting from continued fractions and Khintchine's theorem, Bugeaud introduces a variety of techniques, ranging from explicit constructions to metric number theory, including the theory of Hausdorff dimension. So armed, the reader is led to such celebrated advanced results as the proof of Mahler's conjecture on S-numbers, the Jarnik-Besicovitch theorem, and the existence of T-numbers. Brief consideration is given both to the p-adic and the formal power series cases. Thus the book can be used for graduate courses on Diophantine approximation (some 40 exercises are supplied), or as an introduction for non-experts. Specialists will appreciate the collection of over 50 open problems and the rich and comprehensive list of more than 600 references.
Algebraic numbers can approximate and classify any real number. Here, the author gathers together results about such approximations and classifications. Written for a broad audience, the book is accessible and self-contained, with complete and detailed proofs. Starting from continued fractions and Khintchine's theorem, Bugeaud introduces a variety of techniques, ranging from explicit constructions to metric number theory, including the theory of Hausdorff dimension. So armed, the reader is led to such celebrated advanced results as the proof of Mahler's conjecture on S-numbers, the Jarnik-Besicovitch theorem, and the existence of T-numbers. Brief consideration is given both to the p-adic and the formal power series cases. Thus the book can be used for graduate courses on Diophantine approximation (some 40 exercises are supplied), or as an introduction for non-experts. Specialists will appreciate the collection of over 50 open problems and the rich and comprehensive list of more than 600 references.
|
You may like...
Media ethics in South African context…
Lucas M. Oosthuizen
Paperback
(1)
The Death Of Democracy - Hitler's Rise…
Benjamin Carter Hett
Paperback
(1)
The Prophet - The Spiritual Classic
Kahlil Gibran, Tom Butler-Bowdon
Hardcover
(1)
Prisoner 913 - The Release Of Nelson…
Riaan de Villiers, Jan-Ad Stemmet
Paperback
The Land Is Ours - Black Lawyers And The…
Tembeka Ngcukaitobi
Paperback
(11)
Comrade & Commander - The Life And Times…
Ronnie Kasrils, Fidelis Hove
Paperback
|