Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
With the rapid increase in the variety and quantity of biomedical images in recent years, we see a steadily growing number of computer vision technologies applied to biomedical applications. The time is ripe for us to take a closer look at the accomplishments and experiences gained in this research subdomain, and to strategically plan the directions of our future research. The scientific goal of our workshop, "Computer Vision for Biomedical Image Applications: Current Techniques and Future Trends" (CVBIA), is to examine the diverse applications of computer vision to biomedical image applications, considering both current methods and promising new trends. An additional goal is to provide the opportunity for direct interactions between (1) prominent senior researchers and young scientists, including students, postdoctoral associates and junior faculty; (2) local researchers and international leaders in biomedical image analysis; and (3) computer scientists and medical practitioners. Our CVBIA workshop had two novel characteristics: each contributed paper was authored primarily by a young scientist, and the workshop attracted an unusually large number of well-respected invited speakers (and their papers). We had the good fortune of having Dr. Ayache of INRIA, France to talk about "Computational Anatomy and Computational Physiology," Prof. Grimson of MIT to discuss "Analyzing Anatomical Structures: Leveraging Multiple Sources of Knowledge," Dr. Jiang of the Chinese Academy of Sciences to present their work on "Computational Neuroanatomy and Brain Connectivity," Prof.
In the arts and sciences, as well as in our daily lives, symmetry has made a profound and lasting impact. Likewise, a computational treatment of symmetry and group theory (the ultimate mathematical formalization of symmetry) has the potential to play an important role in computational sciences. Though the term Computational Symmetry was formally defined a decade ago, referring to algorithmic treatment of symmetries, seeking symmetry from digital data has been attempted for over four decades. Computational symmetry on real world data turns out to be challenging enough that, after decades of effort, a fully automated symmetry-savvy system remains elusive for real world applications. Computational Symmetry in Computer Vision and Computer Graphics provides a succinct summary of the relevant mathematical theory, a historic perspective of some important symmetry-related ideas, a partial yet timely report on the state of the arts symmetry detection algorithms along with its first quantitative benchmark, a diverse set of real world applications, suggestions for future directions and a comprehensive reference list.The recent resurgence in interest in computational symmetry for computer vision and computer graphics applications has shown promising results. Computational Symmetry in Computer Vision and Computer Graphics illustrates how far we have come and where the future challenges and opportunities may lie.
|
You may like...
Mission Impossible 6: Fallout
Tom Cruise, Henry Cavill, …
Blu-ray disc
(1)
|