Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
Optimization techniques have been widely adopted to implement various data mining algorithms. In addition to well-known Support Vector Machines (SVMs) (which are based on quadratic programming), different versions of Multiple Criteria Programming (MCP) have been extensively used in data separations. Since optimization based data mining methods differ from statistics, decision tree induction, and neural networks, their theoretical inspiration has attracted many researchers who are interested in algorithm development of data mining. "Optimization based Data Mining: Theory and Applications," mainly focuses on MCP and SVM especially their recent theoretical progress and real-life applications in various fields. These include finance, web services, bio-informatics and petroleum engineering, which has triggered the interest of practitioners who look for new methods to improve the results of data mining for knowledge discovery. Most of the material in this book is directly from the research and application activities that the authors' research group has conducted over the last ten years. Aimed at practitioners and graduates who have a fundamental knowledge in data mining, it demonstrates the basic concepts and foundations on how to use optimization techniques to deal with data mining problems.
Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions presents an accessible treatment of the two main components of support vector machines (SVMs) classification problems and regression problems. The book emphasizes the close connection between optimization theory and SVMs since optimization is one of the pillars on which SVMs are built. The authors share insight on many of their research achievements. They give a precise interpretation of statistical leaning theory for C-support vector classification. They also discuss regularized twin SVMs for binary classification problems, SVMs for solving multi-classification problems based on ordinal regression, SVMs for semi-supervised problems, and SVMs for problems with perturbations. To improve readability, concepts, methods, and results are introduced graphically and with clear explanations. For important concepts and algorithms, such as the Crammer-Singer SVM for multi-class classification problems, the text provides geometric interpretations that are not depicted in current literature. Enabling a sound understanding of SVMs, this book gives beginners as well as more experienced researchers and engineers the tools to solve real-world problems using SVMs.
The three-volume set LNCS 10860, 10861 and 10862 constitutes the proceedings of the 18th International Conference on Computational Science, ICCS 2018, held in Wuxi, China, in June 2018. The total of 155 full and 66 short papers presented in this book set was carefully reviewed and selected from 404 submissions. The papers were organized in topical sections named: Part I: ICCS Main Track Part II: Track of Advances in High-Performance Computational Earth Sciences: Applications and Frameworks; Track of Agent-Based Simulations, Adaptive Algorithms and Solvers; Track of Applications of Matrix Methods in Artificial Intelligence and Machine Learning; Track of Architecture, Languages, Compilation and Hardware Support for Emerging ManYcore Systems; Track of Biomedical and Bioinformatics Challenges for Computer Science; Track of Computational Finance and Business Intelligence; Track of Computational Optimization, Modelling and Simulation; Track of Data, Modeling, and Computation in IoT and Smart Systems; Track of Data-Driven Computational Sciences; Track of Mathematical-Methods-and-Algorithms for Extreme Scale; Track of Multiscale Modelling and Simulation Part III: Track of Simulations of Flow and Transport: Modeling, Algorithms and Computation; Track of Solving Problems with Uncertainties; Track of Teaching Computational Science; Poster Papers
The three-volume set LNCS 10860, 10861 + 10862 constitutes the proceedings of the 18th International Conference on Computational Science, ICCS 2018, held in Wuxi, China, in June 2018. The total of 155 full and 66 short papers presented in this book set was carefully reviewed and selected from 404 submissions. The papers were organized in topical sections named: Part I: ICCS Main Track Part II: Track of Advances in High-Performance Computational Earth Sciences: Applications and Frameworks; Track of Agent-Based Simulations, Adaptive Algorithms and Solvers; Track of Applications of Matrix Methods in Artificial Intelligence and Machine Learning; Track of Architecture, Languages, Compilation and Hardware Support for Emerging ManYcore Systems; Track of Biomedical and Bioinformatics Challenges for Computer Science; Track of Computational Finance and Business Intelligence; Track of Computational Optimization, Modelling and Simulation; Track of Data, Modeling, and Computation in IoT and Smart Systems; Track of Data-Driven Computational Sciences; Track of Mathematical-Methods-and-Algorithms for Extreme Scale; Track of Multiscale Modelling and Simulation Part III: Track of Simulations of Flow and Transport: Modeling, Algorithms and Computation; Track of Solving Problems with Uncertainties; Track of Teaching Computational Science; Poster Papers
The three-volume set LNCS 10860, 10861 and 10862 constitutes the proceedings of the 18th International Conference on Computational Science, ICCS 2018, held in Wuxi, China, in June 2018. The total of 155 full and 66 short papers presented in this book set was carefully reviewed and selected from 404 submissions. The papers were organized in topical sections named: Part I: ICCS Main Track Part II: Track of Advances in High-Performance Computational Earth Sciences: Applications and Frameworks; Track of Agent-Based Simulations, Adaptive Algorithms and Solvers; Track of Applications of Matrix Methods in Artificial Intelligence and Machine Learning; Track of Architecture, Languages, Compilation and Hardware Support for Emerging ManYcore Systems; Track of Biomedical and Bioinformatics Challenges for Computer Science; Track of Computational Finance and Business Intelligence; Track of Computational Optimization, Modelling and Simulation; Track of Data, Modeling, and Computation in IoT and Smart Systems; Track of Data-Driven Computational Sciences; Track of Mathematical-Methods-and-Algorithms for Extreme Scale; Track of Multiscale Modelling and Simulation Part III: Track of Simulations of Flow and Transport: Modeling, Algorithms and Computation; Track of Solving Problems with Uncertainties; Track of Teaching Computational Science; Poster Papers
This book is mainly about an innovative and fundamental method called "intelligent knowledge" to bridge the gap between data mining and knowledge management, two important fields recognized by the information technology (IT) community and business analytics (BA) community respectively. The book includes definitions of the "first-order" analytic process, "second-order" analytic process and intelligent knowledge, which have not formally been addressed by either data mining or knowledge management. Based on these concepts, which are especially important in connection with the current Big Data movement, the book describes a framework of domain-driven intelligent knowledge discovery. To illustrate its technical advantages for large-scale data, the book employs established approaches, such as Multiple Criteria Programming, Support Vector Machine and Decision Tree to identify intelligent knowledge incorporated with human knowledge. The book further shows its applicability by means of real-life data analyses in the contexts of internet business and traditional Chinese medicines.
Optimization techniques have been widely adopted to implement various data mining algorithms. In addition to well-known Support Vector Machines (SVMs) (which are based on quadratic programming), different versions of Multiple Criteria Programming (MCP) have been extensively used in data separations. Since optimization based data mining methods differ from statistics, decision tree induction, and neural networks, their theoretical inspiration has attracted many researchers who are interested in algorithm development of data mining. Optimization based Data Mining: Theory and Applications, mainly focuses on MCP and SVM especially their recent theoretical progress and real-life applications in various fields. These include finance, web services, bio-informatics and petroleum engineering, which has triggered the interest of practitioners who look for new methods to improve the results of data mining for knowledge discovery. Most of the material in this book is directly from the research and application activities that the authors' research group has conducted over the last ten years. Aimed at practitioners and graduates who have a fundamental knowledge in data mining, it demonstrates the basic concepts and foundations on how to use optimization techniques to deal with data mining problems.
This book constitutes the refereed proceedings of the Second International Conference on Data Science, ICDS 2015, held in Sydney, Australia, during August 8-9, 2015. The 19 revised full papers and 5 short papers presented were carefully reviewed and selected from 31 submissions. The papers focus on the following topics: mathematical issues in data science; big data issues and applications; data quality and data preparation; data-driven scientific research; evaluation and measurement in data service; big data mining and knowledge management; case study of data science; social impacts of data science.
|
You may like...
|