0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations (Paperback, 1st ed. 2019):... Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations (Paperback, 1st ed. 2019)
Mitsuhiro T. Nakao, Michael Plum, Yoshitaka Watanabe
R4,290 Discovery Miles 42 900 Ships in 10 - 15 working days

In the last decades, various mathematical problems have been solved by computer-assisted proofs, among them the Kepler conjecture, the existence of chaos, the existence of the Lorenz attractor, the famous four-color problem, and more. In many cases, computer-assisted proofs have the remarkable advantage (compared with a "theoretical" proof) of additionally providing accurate quantitative information. The authors have been working more than a quarter century to establish methods for the verified computation of solutions for partial differential equations, mainly for nonlinear elliptic problems of the form - u=f(x,u, u) with Dirichlet boundary conditions. Here, by "verified computation" is meant a computer-assisted numerical approach for proving the existence of a solution in a close and explicit neighborhood of an approximate solution. The quantitative information provided by these techniques is also significant from the viewpoint of a posteriori error estimates for approximate solutions of the concerned partial differential equations in a mathematically rigorous sense. In this monograph, the authors give a detailed description of the verified computations and computer-assisted proofs for partial differential equations that they developed. In Part I, the methods mainly studied by the authors Nakao and Watanabe are presented. These methods are based on a finite dimensional projection and constructive a priori error estimates for finite element approximations of the Poisson equation. In Part II, the computer-assisted approaches via eigenvalue bounds developed by the author Plum are explained in detail. The main task of this method consists of establishing eigenvalue bounds for the linearization of the corresponding nonlinear problem at the computed approximate solution. Some brief remarks on other approaches are also given in Part III. Each method in Parts I and II is accompanied by appropriate numerical examples that confirm the actual usefulness of the authors' methods. Also in some examples practical computer algorithms are supplied so that readers can easily implement the verification programs by themselves.

Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations (Hardcover, 1st ed. 2019):... Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations (Hardcover, 1st ed. 2019)
Mitsuhiro T. Nakao, Michael Plum, Yoshitaka Watanabe
R4,322 Discovery Miles 43 220 Ships in 10 - 15 working days

In the last decades, various mathematical problems have been solved by computer-assisted proofs, among them the Kepler conjecture, the existence of chaos, the existence of the Lorenz attractor, the famous four-color problem, and more. In many cases, computer-assisted proofs have the remarkable advantage (compared with a "theoretical" proof) of additionally providing accurate quantitative information. The authors have been working more than a quarter century to establish methods for the verified computation of solutions for partial differential equations, mainly for nonlinear elliptic problems of the form - u=f(x,u, u) with Dirichlet boundary conditions. Here, by "verified computation" is meant a computer-assisted numerical approach for proving the existence of a solution in a close and explicit neighborhood of an approximate solution. The quantitative information provided by these techniques is also significant from the viewpoint of a posteriori error estimates for approximate solutions of the concerned partial differential equations in a mathematically rigorous sense. In this monograph, the authors give a detailed description of the verified computations and computer-assisted proofs for partial differential equations that they developed. In Part I, the methods mainly studied by the authors Nakao and Watanabe are presented. These methods are based on a finite dimensional projection and constructive a priori error estimates for finite element approximations of the Poisson equation. In Part II, the computer-assisted approaches via eigenvalue bounds developed by the author Plum are explained in detail. The main task of this method consists of establishing eigenvalue bounds for the linearization of the corresponding nonlinear problem at the computed approximate solution. Some brief remarks on other approaches are also given in Part III. Each method in Parts I and II is accompanied by appropriate numerical examples that confirm the actual usefulness of the authors' methods. Also in some examples practical computer algorithms are supplied so that readers can easily implement the verification programs by themselves.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Bibby's - More Good Food
Dianne Bibby Hardcover R480 R375 Discovery Miles 3 750
Dealing In Death - Ellen Pakkies And A…
Sylvia Walker Paperback R302 Discovery Miles 3 020
The South African Guide To Gluten-Free…
Zorah Booley Samaai Paperback R380 R270 Discovery Miles 2 700
Killing Karoline - A Memoir
Sara-Jayne King Paperback  (1)
R325 R279 Discovery Miles 2 790
The Dirty Secrets Of The Rich And…
James-Brent Styan Paperback R290 R205 Discovery Miles 2 050
1 Recce: Volume 3 - Through Stealth Our…
Alexander Strachan Paperback R360 R309 Discovery Miles 3 090
Nuclear - Inside South Africa's Secret…
Karyn Maughan, Kirsten Pearson Paperback R360 R309 Discovery Miles 3 090
Introduction To Financial Accounting
Dempsey, A. Paperback  (1)
R1,299 R989 Discovery Miles 9 890
Mexico In Mzansi
Aiden Pienaar Paperback R360 R281 Discovery Miles 2 810
Rhodes And His Banker - Empire, Wealth…
Richard Steyn Paperback R330 R220 Discovery Miles 2 200

 

Partners