Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This volume provides academic discussion on the theory and practice of mathematical analysis of nonlinear and inverse problems in electromagnetics and their applications. From mathematical problem statement to numerical results, the featured articles provide a concise overview of comprehensive approaches to the solution of problems. Articles highlight the most recent research concerning reliable theoretical approaches and numerical techniques and cover a wide range of applications, including acoustics, electromagnetics, optics, medical imaging, and geophysics. The nonlinear and ill-posed nature of inverse problems and the challenges they present when developing new numerical methods are explained, and numerical verification of proposed new methods on simulated and experimental data is provided. Based on the special session of the same name at the 2017 Progress in Electromagnetics Research Symposium, this book offers a platform for interaction between theoretical and practical researchers and between senior and incoming members in the field.
This book presents an extensive overview of logarithmic integral operators with kernels depending on one or several complex parameters. Solvability of corresponding boundary value problems and determination of characteristic numbers are analyzed by considering these operators as operator-value functions of appropriate complex (spectral) parameters. Therefore, the method serves as a useful addition to classical approaches. Special attention is given to the analysis of finite-meromorphic operator-valued functions, and explicit formulas for some inverse operators and characteristic numbers are developed, as well as the perturbation technique for the approximate solution of logarithmic integral equations. All essential properties of the generalized single- and double-layer potentials with logarithmic kernels and Green's potentials are considered. Fundamentals of the theory of infinite-matrix summation operators and operator-valued functions are presented, including applications to the solution of logarithmic integral equations. Many boundary value problems for the two-dimensional Helmholtz equation are discussed and explicit formulas for Green's function of canonical domains with separated logarithmic singularities are presented.
This volume provides academic discussion on the theory and practice of mathematical analysis of nonlinear and inverse problems in electromagnetics and their applications. From mathematical problem statement to numerical results, the featured articles provide a concise overview of comprehensive approaches to the solution of problems. Articles highlight the most recent research concerning reliable theoretical approaches and numerical techniques and cover a wide range of applications, including acoustics, electromagnetics, optics, medical imaging, and geophysics. The nonlinear and ill-posed nature of inverse problems and the challenges they present when developing new numerical methods are explained, and numerical verification of proposed new methods on simulated and experimental data is provided. Based on the special session of the same name at the 2017 Progress in Electromagnetics Research Symposium, this book offers a platform for interaction between theoretical and practical researchers and between senior and incoming members in the field.
|
You may like...
Batman v Superman - Dawn Of Justice…
Ben Affleck, Henry Cavill, …
Blu-ray disc
(16)
|