0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (3)
  • -
Status
Brand

Showing 1 - 4 of 4 matches in All Departments

Statistical Thinking in Epidemiology (Paperback): Yu-Kang Tu, Mark Gilthorpe Statistical Thinking in Epidemiology (Paperback)
Yu-Kang Tu, Mark Gilthorpe
R2,035 Discovery Miles 20 350 Ships in 12 - 19 working days

While biomedical researchers may be able to follow instructions in the manuals accompanying the statistical software packages, they do not always have sufficient knowledge to choose the appropriate statistical methods and correctly interpret their results. Statistical Thinking in Epidemiology examines common methodological and statistical problems in the use of correlation and regression in medical and epidemiological research: mathematical coupling, regression to the mean, collinearity, the reversal paradox, and statistical interaction. Statistical Thinking in Epidemiology is about thinking statistically when looking at problems in epidemiology. The authors focus on several methods and look at them in detail: specific examples in epidemiology illustrate how different model specifications can imply different causal relationships amongst variables, and model interpretation is undertaken with appropriate consideration of the context of implicit or explicit causal relationships. This book is intended for applied statisticians and epidemiologists, but can also be very useful for clinical and applied health researchers who want to have a better understanding of statistical thinking. Throughout the book, statistical software packages R and Stata are used for general statistical modeling, and Amos and Mplus are used for structural equation modeling.

Statistical Thinking in Epidemiology (Hardcover, New): Yu-Kang Tu, Mark Gilthorpe Statistical Thinking in Epidemiology (Hardcover, New)
Yu-Kang Tu, Mark Gilthorpe
R3,429 Discovery Miles 34 290 Ships in 12 - 19 working days

While biomedical researchers may be able to follow instructions in the manuals accompanying the statistical software packages, they do not always have sufficient knowledge to choose the appropriate statistical methods and correctly interpret their results. Statistical Thinking in Epidemiology examines common methodological and statistical problems in the use of correlation and regression in medical and epidemiological research: mathematical coupling, regression to the mean, collinearity, the reversal paradox, and statistical interaction. Statistical Thinking in Epidemiology is about thinking statistically when looking at problems in epidemiology. The authors focus on several methods and look at them in detail: specific examples in epidemiology illustrate how different model specifications can imply different causal relationships amongst variables, and model interpretation is undertaken with appropriate consideration of the context of implicit or explicit causal relationships. This book is intended for applied statisticians and epidemiologists, but can also be very useful for clinical and applied health researchers who want to have a better understanding of statistical thinking. Throughout the book, statistical software packages R and Stata are used for general statistical modeling, and Amos and Mplus are used for structural equation modeling.

Modern Methods for Epidemiology (Hardcover, 2012): Yu-Kang Tu, Darren C. Greenwood Modern Methods for Epidemiology (Hardcover, 2012)
Yu-Kang Tu, Darren C. Greenwood
R4,388 Discovery Miles 43 880 Ships in 10 - 15 working days

Routine applications of advanced statistical methods on real data have become possible in the last ten years because desktop computers have become much more powerful and cheaper. However, proper understanding of the challenging statistical theory behind those methods remains essential for correct application and interpretation, and rarely seen in the medical literature. Modern Methods for Epidemiology provides a concise introduction to recent development in statistical methodologies for epidemiological and biomedical researchers. Many of these methods have become indispensible tools for researchers working in epidemiology and medicine but are rarely discussed in details by standard textbooks of biostatistics or epidemiology. Contributors of this book are experienced researchers and experts in their respective fields. This textbook provides a solid starting point for those who are new to epidemiology, and for those looking for guidance in more modern statistical approaches to observational epidemiology. Epidemiological and biomedical researchers who wish to overcome the mathematical barrier of applying those methods to their research will find this book an accessible and helpful reference for self-learning and research. This book is also a good source for teaching postgraduate students in medical statistics or epidemiology.

Modern Methods for Epidemiology (Paperback, 2012 ed.): Yu-Kang Tu, Darren C. Greenwood Modern Methods for Epidemiology (Paperback, 2012 ed.)
Yu-Kang Tu, Darren C. Greenwood
R4,358 Discovery Miles 43 580 Ships in 10 - 15 working days

Routine applications of advanced statistical methods on real data have become possible in the last ten years because desktop computers have become much more powerful and cheaper. However, proper understanding of the challenging statistical theory behind those methods remains essential for correct application and interpretation, and rarely seen in the medical literature. Modern Methods for Epidemiology provides a concise introduction to recent development in statistical methodologies for epidemiological and biomedical researchers. Many of these methods have become indispensible tools for researchers working in epidemiology and medicine but are rarely discussed in details by standard textbooks of biostatistics or epidemiology. Contributors of this book are experienced researchers and experts in their respective fields. This textbook provides a solid starting point for those who are new to epidemiology, and for those looking for guidance in more modern statistical approaches to observational epidemiology. Epidemiological and biomedical researchers who wish to overcome the mathematical barrier of applying those methods to their research will find this book an accessible and helpful reference for self-learning and research. This book is also a good source for teaching postgraduate students in medical statistics or epidemiology.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Bioremediation of Industrial Waste for…
Gaurav Saxena, Ram Naresh Bharagava Hardcover R3,689 Discovery Miles 36 890
Mokgomana - The Life Of John Kgoana…
Peter Delius, Daniel Sher Paperback R260 R240 Discovery Miles 2 400
Whiteness, Afrikaans, Afrikaners…
Various Paperback R220 R203 Discovery Miles 2 030
Water Law
Joseph W. Dellapenna, Joyeeta Gupta Hardcover R7,126 Discovery Miles 71 260
This Is How It Is - True Stories From…
The Life Righting Collective Paperback R265 R245 Discovery Miles 2 450
Crossroads - I Live Where I Like
Koni Benson Paperback R280 R259 Discovery Miles 2 590
Snyman's Criminal Law
Kallie Snyman, Shannon Vaughn Hoctor Paperback R1,463 R1,331 Discovery Miles 13 310
The Maze of the Enchanter - The…
Clark Ashton Smith Paperback R521 R491 Discovery Miles 4 910
Environment and Nuclear Energy
Behram N. Kursunogammalu, Stephan L. Mintz, … Hardcover R3,093 Discovery Miles 30 930
A History Of South Africa - From The…
Fransjohan Pretorius Paperback R435 Discovery Miles 4 350

 

Partners