Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This monograph provides an accessible and comprehensive introduction to James Arthur's invariant trace formula, a crucial tool in the theory of automorphic representations. It synthesizes two decades of Arthur's research and writing into one volume, treating a highly detailed and often difficult subject in a clearer and more uniform manner without sacrificing any technical details. The book begins with a brief overview of Arthur's work and a proof of the correspondence between GL(n) and its inner forms in general. Subsequent chapters develop the invariant trace formula in a form fit for applications, starting with Arthur's proof of the basic, non-invariant trace formula, followed by a study of the non-invariance of the terms in the basic trace formula, and, finally, an in-depth look at the development of the invariant formula. The final chapter illustrates the use of the formula by comparing it for G' = GL(n) and its inner form G< and for functions with matching orbital integrals. Arthur's Invariant Trace Formula and Comparison of Inner Forms will appeal to advanced graduate students, researchers, and others interested in automorphic forms and trace formulae. Additionally, it can be used as a supplemental text in graduate courses on representation theory.
This monograph provides an accessible and comprehensive introduction to James Arthur's invariant trace formula, a crucial tool in the theory of automorphic representations. It synthesizes two decades of Arthur's research and writing into one volume, treating a highly detailed and often difficult subject in a clearer and more uniform manner without sacrificing any technical details. The book begins with a brief overview of Arthur's work and a proof of the correspondence between GL(n) and its inner forms in general. Subsequent chapters develop the invariant trace formula in a form fit for applications, starting with Arthur's proof of the basic, non-invariant trace formula, followed by a study of the non-invariance of the terms in the basic trace formula, and, finally, an in-depth look at the development of the invariant formula. The final chapter illustrates the use of the formula by comparing it for G' = GL(n) and its inner form G< and for functions with matching orbital integrals. Arthur's Invariant Trace Formula and Comparison of Inner Forms will appeal to advanced graduate students, researchers, and others interested in automorphic forms and trace formulae. Additionally, it can be used as a supplemental text in graduate courses on representation theory.
Drinfeld Moduli Schemes and Automorphic Forms: The Theory of Elliptic Modules with Applications is based on the author's original work establishing the correspondence between ell-adic rank r Galois representations and automorphic representations of GL(r) over a function field, in the local case, and, in the global case, under a restriction at a single place. It develops Drinfeld's theory of elliptic modules, their moduli schemes and covering schemes, the simple trace formula, the fixed point formula, as well as the congruence relations and a "simple" converse theorem, not yet published anywhere. This version, based on a recent course taught by the author at The Ohio State University, is updated with references to research that has extended and developed the original work. The use of the theory of elliptic modules in the present work makes it accessible to graduate students, and it will serve as a valuable resource to facilitate an entrance to this fascinating area of mathematics.
|
You may like...
Snyman's Criminal Law
Kallie Snyman, Shannon Vaughn Hoctor
Paperback
Indentured - Behind The Scenes At Gupta…
Rajesh Sundaram
Paperback
(2)
Women In Solitary - Inside The Female…
Shanthini Naidoo
Paperback
(1)
Twice The Glory - The Making Of The…
Lloyd Burnard, Khanyiso Tshwaku
Paperback
|