Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 25 of 46 matches in All Departments
Music recommendation systems are becoming more and more popular. The increasing amount of personal data left by users on social media contributes to more accurate inference of the user's musical preferences and the same to quality of personalized systems. Health recommendation systems have become indispensable tools in decision making processes in the healthcare sector. Their main objective is to ensure the availability of valuable information at the right time by ensuring information quality, trustworthiness, authentication, and privacy concerns. Medical doctors deal with various kinds of diseases in which the music therapy helps to improve symptoms. Listening to music may improve heart rate, respiratory rate, and blood pressure in people with heart disease. Sound healing therapy uses aspects of music to improve physical and emotional health and well-being. The book presents a variety of approaches useful to create recommendation systems in healthcare, music, and in music therapy.
This book presents a selection of papers from the industrial track of ISMIS 2020. The selection emphasizes broad applicability of artificial intelligence (AI) technologies in various industrial fields. The aim of the book is to fertilize preliminary ideas of readers on the application of AI by means of already successfully implemented application examples. Furthermore, the development of new ideas and concepts shall be motivated by the variety of different application examples. The spectrum of the presented contributions ranges from education and training, industrial applications in production and logistics to the development of new approaches in basic research, which will further expand the possibilities of future applications of AI in industrial settings. This broad spectrum gives readers working in the industrial as well as the academic field a good overview of the state of the art in the field of methodologies for intelligent systems.
The book presents a knowledge discovery based approach to build a recommender system supporting a physician in treating tinnitus patients with the highly successful method called Tinnitus Retraining Therapy. It describes experiments on extracting novel knowledge from the historical dataset of patients treated by Dr. P. Jastreboff so that to better understand factors behind therapy's effectiveness and better personalize treatments for different profiles of patients. The book is a response for a growing demand of an advanced data analytics in the healthcare industry in order to provide better care with the data driven decision-making solutions. The potential economic benefits of applying computerized clinical decision support systems include not only improved efficiency in health care delivery (by reducing costs, improving quality of care and patient safety), but also enhancement in treatment's standardization, objectivity and availability in places of scarce expert's knowledge on this difficult to treat hearing disorder. Furthermore, described approach could be used in assessment of the clinical effectiveness of evidence-based intervention of various proposed treatments for tinnitus.
Data Management is the process of planning, coordinating and controlling data resources. More often, applications need to store and search a large amount of data. Managing Data has been continuously challenged by demands from various areas and applications and has evolved in parallel with advances in hardware and computing techniques. This volume focuses on its recent advances and it is composed of five parts and a total of eighteen chapters. The first part of the book contains five contributions in the area of information retrieval and Web intelligence: a novel approach to solving index selection problem, integrated retrieval from Web of documents and data, bipolarity in database querying, deriving data summarization through ontologies, and granular computing for Web intelligence. The second part of the book contains four contributions in knowledge discovery area. Its third part contains three contributions in information integration and data security area. The remaining two parts of the book contain six contributions in the area of intelligent agents and applications of data management in medical domain.
This book presents the Recommender System for Improving Customer Loyalty. New and innovative products have begun appearing from a wide variety of countries, which has increased the need to improve the customer experience. When a customer spends hundreds of thousands of dollars on a piece of equipment, keeping it running efficiently is critical to achieving the desired return on investment. Moreover, managers have discovered that delivering a better customer experience pays off in a number of ways. A study of publicly traded companies conducted by Watermark Consulting found that from 2007 to 2013, companies with a better customer service generated a total return to shareholders that was 26 points higher than the S&P 500. This is only one of many studies that illustrate the measurable value of providing a better service experience. The Recommender System presented here addresses several important issues. (1) It provides a decision framework to help managers determine which actions are likely to have the greatest impact on the Net Promoter Score. (2) The results are based on multiple clients. The data mining techniques employed in the Recommender System allow users to "learn" from the experiences of others, without sharing proprietary information. This dramatically enhances the power of the system. (3) It supplements traditional text mining options. Text mining can be used to identify the frequency with which topics are mentioned, and the sentiment associated with a given topic. The Recommender System allows users to view specific, anonymous comments associated with actual customers. Studying these comments can provide highly accurate insights into the steps that can be taken to improve the customer experience. (4) Lastly, the system provides a sensitivity analysis feature. In some cases, certain actions can be more easily implemented than others. The Recommender System allows managers to "weigh" these actions and determine which ones would have a greater impact.
Intelligent Information Systems (IIS) can be defined as the next generation of Information Systems (IS) developed as a result of integration of AI and database (DB) technologies. IIS embody knowledge that allows them to exhibit intelligent behavior, allows them to cooperate with users and other systems in problem solving, discovery, retrieval, and manipulation of data and knowledge. For any IIS to serve its purpose, the information must be available when it is needed. This means that the computing systems used to store data and process the information, and the security controls used to protect it must be functioning correctly. This book covers some of the above topics and it is divided into four sections: Classification, Approximation and Data Security, Knowledge Management, and Application of IIS to medical and music domains.
Sound waves propagate through various media, and allow communication or entertainment for us, humans. Music we hear or create can be perceived in such aspects as rhythm, melody, harmony, timbre, or mood. All these elements of music can be of interest for users of music information retrieval systems. Since vast music repositories are available for everyone in everyday use (both in private collections, and in the Internet), it is desirable and becomes necessary to browse music collections by contents. Therefore, music information retrieval can be potentially of interest for every user of computers and the Internet. There is a lot of research performed in music information retrieval domain, and the outcomes, as well as trends in this research, are certainly worth popularizing. This idea motivated us to prepare the book on Advances in Music Information Retrieval. It is divided into four sections: MIR Methods and Platforms, Harmony, Music Similarity, and Content Based Identification and Retrieval. Glossary of basic terms is given at the end of the book, to familiarize readers with vocabulary referring to music information retrieval.
The aim of this book is to gather the most recent works that address issues related to the concept of mining complex data. The whole knowledge discovery process being involved, our goal is to provide researchers dealing with each step of this process by key entries. Actually, managing complex data within the KDD process implies to work on every step, starting from the pre-processing (e.g. structuring and organizing) to the visualization and interpretation (e.g. sorting or filtering) of the results, via the data mining methods themselves (e.g. classification, clustering, frequent patterns extraction, etc.). The papers presented here are selected from the workshop papers held yearly since 2006.
This book discusses the challenges facing current research in knowledge discovery and data mining posed by the huge volumes of complex data now gathered in various real-world applications (e.g., business process monitoring, cybersecurity, medicine, language processing, and remote sensing). The book consists of 14 chapters covering the latest research by the authors and the research centers they represent. It illustrates techniques and algorithms that have recently been developed to preserve the richness of the data and allow us to efficiently and effectively identify the complex information it contains. Presenting the latest developments in complex pattern mining, this book is a valuable reference resource for data science researchers and professionals in academia and industry.
The College of Computing and Informatics (CCI) at UNC-Charlotte has three departments: Computer Science, Software and Information Systems, and Bioinformatics and Genomics. The Department of Computer Science offers study in a variety of specialized computing areas such as database design, knowledge systems, computer graphics, artificial intelligence, computer networks, game design, visualization, computer vision, and virtual reality. The Department of Software and Information Systems is primarily focused on the study of technologies and methodologies for information system architecture, design, implementation, integration, and management with particular emphasis on system security. The Department of Bioinformatics and Genomics focuses on the discovery, development and application of novel computational technologies to help solve important biological problems. This volume gives an overview of research done by CCI faculty in the area of Information & Intelligent Systems. Presented papers focus on recent advances in four major directions: Complex Systems, Knowledge Management, Knowledge Discovery, and Visualization. A major reason for producing this book was to demonstrate a new, important thrust in academic research where college-wide interdisciplinary efforts are brought to bear on large, general, and important problems. As shown in the research described here, these efforts need not be formally organized joint undertakings (through parts could be) but are rather a convergence of interests around grand themes.
This is the second volume of a large two-volume editorial project we wish to dedicate to the memory of the late Professor Ryszard S. Michalski who passed away in 2007. He was one of the fathers of machine learning, an exciting and relevant, both from the practical and theoretical points of view, area in modern computer science and information technology. His research career started in the mid-1960s in Poland, in the Institute of Automation, Polish Academy of Sciences in Warsaw, Poland. He left for the USA in 1970, and since then had worked there at various universities, notably, at the University of Illinois at Urbana - Champaign and finally, until his untimely death, at George Mason University. We, the editors, had been lucky to be able to meet and collaborate with Ryszard for years, indeed some of us knew him when he was still in Poland. After he started working in the USA, he was a frequent visitor to Poland, taking part at many conferences until his death. We had also witnessed with a great personal pleasure honors and awards he had received over the years, notably when some years ago he was elected Foreign Member of the Polish Academy of Sciences among some top scientists and scholars from all over the world, including Nobel prize winners. Professor Michalski's research results influenced very strongly the development of machine learning, data mining, and related areas. Also, he inspired many established and younger scholars and scientists all over the world. We feel very happy that so many top scientists from all over the world agreed to pay the last tribute to Professor Michalski by writing papers in their areas of research. These papers will constitute the most appropriate tribute to Professor Michalski, a devoted scholar and researcher. Moreover, we believe that they will inspire many newcomers and younger researchers in the area of broadly perceived machine learning, data analysis and data mining. The papers included in the two volumes, Machine Learning I and Machine Learning II, cover diverse topics, and various aspects of the fields involved. For convenience of the potential readers, we will now briefly summarize the contents of the particular chapters.
This book discusses the challenges facing current research in knowledge discovery and data mining posed by the huge volumes of complex data now gathered in various real-world applications (e.g., business process monitoring, cybersecurity, medicine, language processing, and remote sensing). The book consists of 14 chapters covering the latest research by the authors and the research centers they represent. It illustrates techniques and algorithms that have recently been developed to preserve the richness of the data and allow us to efficiently and effectively identify the complex information it contains. Presenting the latest developments in complex pattern mining, this book is a valuable reference resource for data science researchers and professionals in academia and industry.
This book presents the Recommender System for Improving Customer Loyalty. New and innovative products have begun appearing from a wide variety of countries, which has increased the need to improve the customer experience. When a customer spends hundreds of thousands of dollars on a piece of equipment, keeping it running efficiently is critical to achieving the desired return on investment. Moreover, managers have discovered that delivering a better customer experience pays off in a number of ways. A study of publicly traded companies conducted by Watermark Consulting found that from 2007 to 2013, companies with a better customer service generated a total return to shareholders that was 26 points higher than the S&P 500. This is only one of many studies that illustrate the measurable value of providing a better service experience. The Recommender System presented here addresses several important issues. (1) It provides a decision framework to help managers determine which actions are likely to have the greatest impact on the Net Promoter Score. (2) The results are based on multiple clients. The data mining techniques employed in the Recommender System allow users to "learn" from the experiences of others, without sharing proprietary information. This dramatically enhances the power of the system. (3) It supplements traditional text mining options. Text mining can be used to identify the frequency with which topics are mentioned, and the sentiment associated with a given topic. The Recommender System allows users to view specific, anonymous comments associated with actual customers. Studying these comments can provide highly accurate insights into the steps that can be taken to improve the customer experience. (4) Lastly, the system provides a sensitivity analysis feature. In some cases, certain actions can be more easily implemented than others. The Recommender System allows managers to "weigh" these actions and determine which ones would have a greater impact.
The book presents a knowledge discovery based approach to build a recommender system supporting a physician in treating tinnitus patients with the highly successful method called Tinnitus Retraining Therapy. It describes experiments on extracting novel knowledge from the historical dataset of patients treated by Dr. P. Jastreboff so that to better understand factors behind therapy's effectiveness and better personalize treatments for different profiles of patients. The book is a response for a growing demand of an advanced data analytics in the healthcare industry in order to provide better care with the data driven decision-making solutions. The potential economic benefits of applying computerized clinical decision support systems include not only improved efficiency in health care delivery (by reducing costs, improving quality of care and patient safety), but also enhancement in treatment's standardization, objectivity and availability in places of scarce expert's knowledge on this difficult to treat hearing disorder. Furthermore, described approach could be used in assessment of the clinical effectiveness of evidence-based intervention of various proposed treatments for tinnitus.
This book features a collection of revised and significantly extended versions of the papers accepted for presentation at the 6th International Workshop on New Frontiers in Mining Complex Patterns, NFMCP 2017, held in conjunction with ECML-PKDD 2017 in Skopje, Macedonia, in September 2017. The book is composed of five parts: feature selection and induction; classification prediction; clustering; pattern discovery; applications. The workshop was aimed at discussing and introducing new algorithmic foundations and representation formalisms in complex pattern discovery. Finally, it encouraged the integration of recent results from existing fields, such as Statistics, Machine Learning and Big Data Analytics.
This book constitutes the proceedings of the 20th International Symposium on Methodologies for Intelligent Systems, ISMIS 2012, held in Macau, China, in December 2012. The 42 regular papers and 11 short papers presented were carefully reviewed and selected from 88 submissions. They are organized in topical sections named: knowledge discovery and data mining; intelligent information systems; text mining and language processing; knowledge representation and integration; music information retrieval; recommender systems; technology intelligence and applications; product configuration; human factors in information retrieval; social recommender systems; and warehousing and OLAPing complex, spatial and spatio-temporal data.
Sound waves propagate through various media, and allow communication or entertainment for us, humans. Music we hear or create can be perceived in such aspects as rhythm, melody, harmony, timbre, or mood. All these elements of music can be of interest for users of music information retrieval systems. Since vast music repositories are available for everyone in everyday use (both in private collections, and in the Internet), it is desirable and becomes necessary to browse music collections by contents. Therefore, music information retrieval can be potentially of interest for every user of computers and the Internet. There is a lot of research performed in music information retrieval domain, and the outcomes, as well as trends in this research, are certainly worth popularizing. This idea motivated us to prepare the book on Advances in Music Information Retrieval. It is divided into four sections: MIR Methods and Platforms, Harmony, Music Similarity, and Content Based Identification and Retrieval. Glossary of basic terms is given at the end of the book, to familiarize readers with vocabulary referring to music information retrieval.
Professor Richard S. Michalski passed away on September 20, 2007. Once we learned about his untimely death we immediately realized that we would no longer have with us a truly exceptional scholar and researcher who for several decades had been inf- encing the work of numerous scientists all over the world - not only in his area of exp- tise, notably machine learning, but also in the broadly understood areas of data analysis, data mining, knowledge discovery and many others. In fact, his influence was even much broader due to his creative vision, integrity, scientific excellence and excepti- ally wide intellectual horizons which extended to history, political science and arts. Professor Michalski's death was a particularly deep loss to the whole Polish sci- tific community and the Polish Academy of Sciences in particular. After graduation, he began his research career at the Institute of Automatic Control, Polish Academy of Science in Warsaw. In 1970 he left his native country and hold various prestigious positions at top US universities. His research gained impetus and he soon established himself as a world authority in his areas of interest - notably, he was widely cons- ered a father of machine learning.
Intelligent Information Systems (IIS) can be defined as the next generation of Information Systems (IS) developed as a result of integration of AI and database (DB) technologies. IIS embody knowledge that allows them to exhibit intelligent behavior, allows them to cooperate with users and other systems in problem solving, discovery, retrieval, and manipulation of data and knowledge. For any IIS to serve its purpose, the information must be available when it is needed. This means that the computing systems used to store data and process the information, and the security controls used to protect it must be functioning correctly. This book covers some of the above topics and it is divided into four sections: Classification, Approximation and Data Security, Knowledge Management, and Application of IIS to medical and music domains.
Professor Richard S. Michalski passed away on September 20, 2007. Once we learned about his untimely death we immediately realized that we would no longer have with us a truly exceptional scholar and researcher who for several decades had been inf- encing the work of numerous scientists all over the world - not only in his area of expertise, notably machine learning, but also in the broadly understood areas of data analysis, data mining, knowledge discovery and many others. In fact, his influence was even much broader due to his creative vision, integrity, scientific excellence and exceptionally wide intellectual horizons which extended to history, political science and arts. Professor Michalski's death was a particularly deep loss to the whole Polish sci- tific community and the Polish Academy of Sciences in particular. After graduation, he began his research career at the Institute of Automatic Control, Polish Academy of Science in Warsaw. In 1970 he left his native country and hold various prestigious positions at top US universities. His research gained impetus and he soon established himself as a world authority in his areas of interest - notably, he was widely cons- ered a father of machine learning.
The College of Computing and Informatics (CCI) at UNC-Charlotte has three departments: Computer Science, Software and Information Systems, and Bioinformatics and Genomics. The Department of Computer Science offers study in a variety of specialized computing areas such as database design, knowledge systems, computer graphics, artificial intelligence, computer networks, game design, visualization, computer vision, and virtual reality. The Department of Software and Information Systems is primarily focused on the study of technologies and methodologies for information system architecture, design, implementation, integration, and management with particular emphasis on system security. The Department of Bioinformatics and Genomics focuses on the discovery, development and application of novel computational technologies to help solve important biological problems. This volume gives an overview of research done by CCI faculty in the area of Information & Intelligent Systems. Presented papers focus on recent advances in four major directions: Complex Systems, Knowledge Management, Knowledge Discovery, and Visualization. A major reason for producing this book was to demonstrate a new, important thrust in academic research where college-wide interdisciplinary efforts are brought to bear on large, general, and important problems. As shown in the research described here, these efforts need not be formally organized joint undertakings (through parts could be) but are rather a convergence of interests around grand themes.
Data Management is the process of planning, coordinating and controlling data resources. More often, applications need to store and search a large amount of data. Managing Data has been continuously challenged by demands from various areas and applications and has evolved in parallel with advances in hardware and computing techniques. This volume focuses on its recent advances and it is composed of five parts and a total of eighteen chapters. The first part of the book contains five contributions in the area of information retrieval and Web intelligence: a novel approach to solving index selection problem, integrated retrieval from Web of documents and data, bipolarity in database querying, deriving data summarization through ontologies, and granular computing for Web intelligence. The second part of the book contains four contributions in knowledge discovery area. Its third part contains three contributions in information integration and data security area. The remaining two parts of the book contain six contributions in the area of intelligent agents and applications of data management in medical domain.
The aim of this book is to gather the most recent works that address issues related to the concept of mining complex data. The whole knowledge discovery process being involved, our goal is to provide researchers dealing with each step of this process by key entries. Actually, managing complex data within the KDD process implies to work on every step, starting from the pre-processing (e.g. structuring and organizing) to the visualization and interpretation (e.g. sorting or filtering) of the results, via the data mining methods themselves (e.g. classification, clustering, frequent patterns extraction, etc.). The papers presented here are selected from the workshop papers held yearly since 2006.
This book constitutes the refereed proceedings of the 18th International Symposium on Methodologies for Intelligent Systems, ISMIS 2009, held in Prague, Czech Republic, in September 2009. The 60 revised papers presented together with 4 plenary talks were carefully reviewed and selected from over 111 submissions. The papers are organized in topical sections on knowledge discovery and data mining, applications and intelligent systems in Medicine, logical and theoretical aspects of intelligent systems, text mining, applications of intelligent sysems in music, information processing, agents, machine learning, applications of intelligent systems, complex data, general AI as well as uncertainty.
This volume contains 20 papers selected for presentation at the Third Inter- tional Workshopon Mining Complex Data-MCD2007-held in Warsaw, Poland, September 17-21, 2007. MCD is a workshop series that started in conjunction with the 5th IEEE International Conference on Data Mining (ICDM) in Ho- ton, Texas, November27-30,2005.ThesecondMCDworkshopwasheldagainin conjunction with the ICDM Conference in Hong Kong, December 18-22, 2006. Data mining and knowledge discovery, as stated in their early de?nition, can today be considered as stable ?elds with numerous e?cient methods and studies that have been proposed to extract knowledge from data. Nevertheless, the famous golden nugget is still challenging. Actually, the context evolved since the ?rst de?nition of the KDD process, and knowledge now has to be extracted from data becoming more and more complex. In the frameworkof data mining, many softwaresolutions were developedfor theextractionofknowledgefromtabulardata(whicharetypicallyobtainedfrom relationaldatabases).Methodologicalextensionswereproposedtodealwithdata initiallyobtainedfromothersources, e.g., inthecontextofnaturallanguage(text mining) and image (image mining). KDD has thus evolved following a unimodal scheme instantiated according to the type of the underlying data (tabular data, text, images, etc.), which, at the end, always leads to working on the classical double entry tabular format. However, in a large number of application domains, this unimodal approach appears to be too restrictive. Consider for instance a corpus of medical |
You may like...
Revealing Revelation - How God's Plans…
Amir Tsarfati, Rick Yohn
Paperback
(5)
|