Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
Neurons communicate with each other by releasing neurotransmitters. This book provides comprehensive coverage of the molecular mechanisms involved in neurotransmitter release. The topics covered in the book range from the architecture and cytomatrix proteins of presynaptic sites, to the modes of synaptic vesicle exocytosis (full-collapse and kiss-and-run), and from the key molecules mediating synaptic vesicle fusion (SNAREs) to those that closely interact with them (UNC-13/Munc13, UNC-18/Munc18, tomosyn, and complexins). The book also delves into the calcium sensors of synaptic vesicle fusion (synaptotagmins and Doc2s), the sources of calcium that trigger synaptic exocytosis (voltage-gated calcium channels and ryanodine receptors), and the regulation of neurotransmitter release by potassium channels, cell adhesion molecules, lipids, aryl hydrocarbon receptor-interacting protein (AIP), presenilins, and calstabins. To aid in understanding and illustrate key concepts, the book includes sufficient background information and a wealth of illustrations and diagrams. The new edition includes major updates to previous chapters, as well as several new chapters that reflect the recent advances in the field. Comprehensive and cutting-edge, Molecular Mechanisms of Neurotransmitter Release, 2nd edition, is a valuable learning resource for neuroscience students and a solid reference for neuroscientists.
This book provides a broader introduction to the theories and applications of sparse coding techniques in computer vision research. It introduces sparse coding in the context of representation learning, illustrates the fundamental concepts, and summarizes the most active research directions. A variety of applications of sparse coding are discussed, ranging from low-level image processing tasks such as super-resolution and de-blurring to high-level semantic understanding tasks such as image recognition, clustering and fusion.The book is suitable to be used as an introductory overview to this field, with its theoretical part being both easy and precious enough for quick understanding. It is also of great value to experienced researchers as it offers new perspective to the underlying mechanism of sparse coding, and points out potential future directions for different applications.
Neurons in the nervous system organize into complex networks and their functions are precisely controlled. The most important means for neurons to communicate with each other is transmission through chemical synapses, where the release of neurotransmitters by the presynaptic nerve terminal of one neuron influences the function of a second neuron. Since the discovery of chemical neurotransmission by Otto Loewi in the 1920s, great progress has been made in our understanding of mol- ular mechanisms of neurotransmitter release. The last decade has seen an explosion of knowledge in this field. The aim of Molecular Mechanisms of Neurotransmitter Release is to provide up-to-date, in-depth coverage of essentially all major mole- lar mechanisms of neurotransmitter release. The contributors have made great efforts to write concisely but with sufficient background information, and to use figures/diagrams to present clearly key concepts or experiments. It is hoped that this book may serve as a learning tool for neuroscience students, a solid reference for neuroscientists, and a source of knowledge for people who have a general interest in neuroscience. I was fortunate to be able to gather contributions from a group of outstanding scientists. I thank them for their efforts. In particular, I want to thank Dr. Erik Jorgensen who offered valuable suggestions about the book in addition to contrib- ing an excellent chapter. I thank US National Science Foundation and National Institute of Health for their supports.
|
You may like...
Sky Guide Southern Africa 2025 - An…
Astronomical Handbook for SA
Paperback
|