Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 10 of 10 matches in All Departments
This handbook presents the key properties of silicon carbide (SiC), the power semiconductor for the 21st century. It describes related technologies, reports the rapid developments and achievements in recent years, and discusses the remaining challenging issues in the field. The book consists of 15 chapters, beginning with a chapter by Professor W. J. Choyke, the leading authority in the field, and is divided into four sections. The topics include presolar SiC history, vapor-liquid-solid growth, spectroscopic investigations of 3C-SiC/Si, developments and challenges in the 21st century; CVD principles and techniques, homoepitaxy of 4H-SiC, cubic SiC grown on 4H-SiC, SiC thermal oxidation processes and MOS interface, raman scattering, NIR luminescent studies, Mueller matrix ellipsometry, raman microscopy and imaging, 4H-SiC UV photodiodes, radiation detectors, and short wavelength and synchrotron X-ray diffraction. This comprehensive work provides a strong contribution to the engineering, materials, and basic science knowledge of the 21st century, and will be of interest to material growers, designers, engineers, scientists, postgraduate students, and entrepreneurs.
This handbook addresses the development of energy-efficient, environmentally friendly solid-state light sources, in particular semiconductor light emitting diodes (LEDs) and other solid-state lighting devices. It reflects the vast growth of this field and impacts in diverse industries, from lighting to communications, biotechnology, imaging, and medicine. The chapters include coverage of nanoscale processing, fabrication of LEDs, light diodes, photodetectors and nanodevices, characterization techniques, application, and recent advances. Readers will obtain an understanding of the key properties of solid-state lighting and LED devices, an overview of current technologies, and appreciation for the challenges remaining. The handbook will be useful to material growers and evaluators, device design and processing engineers, newcomers, students, and professionals in the field.
Group III-Nitrides semiconductor materials, including GaN, InN, AlN, InGaN, AlGaN and AlInGaN, i.e. (Al, In, Ga)N, are excellent semiconductors, covering the spectral range from deep ultraviolet (DUV) to UV, visible and infrared, with unique properties very suitable for modern electronic and optoelectronic applications. Remarkable breakthroughs have been achieved in recent years for research and development (R&D) in these materials and devices, such as high-power and high brightness UV-blue-green-white light emitting diodes (LEDs), UV-blue-green laser diodes (LDs), photo-detectors and various optoelectronics and electronics devices and applications.The Nobel Prize in Physics 2014 was awarded jointly to Isamu Akasaki, Hiroshi Amano and Shuji Nakamura 'for the invention of efficient blue light-emitting diodes which has enabled bright and energy-saving white light sources'. Red and green diodes had been invented since 1960s-70s but without blue LED. Despite considerable efforts, the blue LED had remained a challenge for a long time. The success and inventions on GaN-based LEDs were revolutionary and benefiting for mankind. III-Nitrides-based industry has formed and acquired rapid developments over the world. Incandescent light bulbs lit the 20th century and the 21st century will be lit by LED lamps.Before this book, the editor has edited two books, III-Nitride Semiconductor Materials (2006) and III-Nitride Devices and Nanoengineering (2008), both published by ICP/WSP, in the fields of III-Nitride. The developments of these materials and devices are moving rapidly. Many data or knowledge, some even just published only recently, have been modified and needed to be upgraded. This new book, III-Nitride Materials, Devices and Nano-Structures as the third instalment, will cover the rapid new developments and achievements in the III-Nitride fields, particularly those made since 2009.
Through their application in energy-efficient and environmentally friendly devices, zinc oxide (ZnO) and related classes of wide gap semiconductors, including GaN and SiC, are revolutionizing numerous areas, from lighting, energy conversion, photovoltaics, and communications to biotechnology, imaging, and medicine. With an emphasis on engineering and materials science, Handbook of Zinc Oxide and Related Materials provides a comprehensive, up-to-date review of various technological aspects of ZnO. Volume One presents fundamental knowledge on ZnO-based materials and technologies. It covers the basic physics and chemistry of ZnO and related compound semiconductors and alloys. The first part of this volume discusses preparation methods, modeling, and doping strategies. It then describes epitaxial methods used to create thin films and functional materials. The book concludes with a review of alloys and related materials, exploring their preparation, bulk properties, and applications. Covering key properties and important technologies of ZnO-based devices and nano-engineering, the handbook highlights the potential of this wide gap semiconductor. It also illustrates the remaining challenging issues in nanomaterial preparation and device fabrication for R&D in the twenty-first century.
Through their application in energy-efficient and environmentally friendly devices, zinc oxide (ZnO) and related classes of wide gap semiconductors, including GaN and SiC, are revolutionizing numerous areas, from lighting, energy conversion, photovoltaics, and communications to biotechnology, imaging, and medicine. With an emphasis on engineering and materials science, Handbook of Zinc Oxide and Related Materials provides a comprehensive, up-to-date review of various technological aspects of ZnO. Volume Two focuses on devices and nanostructures created from ZnO and similar materials. The book covers various nanostructures, synthesis/creation strategies, device behavior, and state-of-the-art applications in electronics and optoelectronics. It also provides useful information on the device and nanoscale process and examines the fabrication of LEDs, LDs, photodetectors, and nanodevices. Covering key properties and important technologies of ZnO-based devices and nanoengineering, the handbook highlights the potential of this wide gap semiconductor. It also illustrates the remaining challenging issues in nanomaterial preparation and device fabrication for R&D in the twenty-first century.
Through their application in energy-efficient and environmentally friendly devices, zinc oxide (ZnO) and related classes of wide gap semiconductors, including GaN and SiC, are revolutionizing numerous areas, from lighting, energy conversion, photovoltaics, and communications to biotechnology, imaging, and medicine. With an emphasis on engineering and materials science, Handbook of Zinc Oxide and Related Materials provides a comprehensive, up-to-date review of various technological aspects of ZnO. Volume Two focuses on devices and nanostructures created from ZnO and similar materials. The book covers various nanostructures, synthesis/creation strategies, device behavior, and state-of-the-art applications in electronics and optoelectronics. It also provides useful information on the device and nanoscale process and examines the fabrication of LEDs, LDs, photodetectors, and nanodevices. Covering key properties and important technologies of ZnO-based devices and nanoengineering, the handbook highlights the potential of this wide gap semiconductor. It also illustrates the remaining challenging issues in nanomaterial preparation and device fabrication for R&D in the twenty-first century.
This book reviews the progress achieved in SiC research and development, particularly over the past 10 years. It presents the essential properties of 3C-, 6H- and 4H-SiC polytypes including structural, electrical, optical, surface and interface properties; describes existing key SiC devices and also the challenges in materials growth and device fabrication of the 21st century.
This book reviews the progress achieved in SiC research and development, particularly over the past 10 years. It presents the essential properties of 3C-, 6H- and 4H-SiC polytypes including structural, electrical, optical, surface and interface properties; describes existing key SiC devices and also the challenges in materials growth and device fabrication of the 21st century.
This handbook addresses the development of energy-efficient, environmentally friendly solid-state light sources, in particular semiconductor light emitting diodes (LEDs) and other solid-state lighting devices. It reflects the vast growth of this field and impacts in diverse industries, from lighting to communications, biotechnology, imaging, and medicine. The chapters include coverage of nanoscale processing, fabrication of LEDs, light diodes, photodetectors and nanodevices, characterization techniques, application, and recent advances. Readers will obtain an understanding of the key properties of solid-state lighting and LED devices, an overview of current technologies, and appreciation for the challenges remaining. The handbook will be useful to material growers and evaluators, device design and processing engineers, newcomers, students, and professionals in the field.
Due to the recent discovery of the room-temperature visible light emission from porous silicon (P-Si), a great interest in P-Si and related materials has arisen in the last decade of the 20th century. Crystalline (c-) Si, at the heart of integrated circuits, has an indirect band gap of 1.1 eV, which limits its application in optoelectronics. The visible light emitting P-Si may open a new field combining Si integrated technology and optoelectronics. This book is a comprehensive review of the recent research and development of porous silicon. Strong visible photoluminescence (PL) and electroluminescence (EL) from P-Si and other forms of silicon nanocrystallites (nc-Si) are reviewed. Several proposed mechanisms for the PL from porous silicon such as quantum confinement, amorphicity and molecular PL are studied. The following issues are covered: mechanisms for the visible light emission, physical structures, studies of the PL and EL, correlation of structure and optical studies, surface physics and chemistry, relationships among various forms (P-Si, a-Si, c-Si), device applications, future developments.
|
You may like...
Eight Days In July - Inside The Zuma…
Qaanitah Hunter, Kaveel Singh, …
Paperback
(1)
|