0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Introduction to Infinite Dimensional Stochastic Analysis (Hardcover, 2000 ed.): Zhi-yuan Huang, Jia-an Yan Introduction to Infinite Dimensional Stochastic Analysis (Hardcover, 2000 ed.)
Zhi-yuan Huang, Jia-an Yan
R3,052 Discovery Miles 30 520 Ships in 10 - 15 working days

The infinite dimensional analysis as a branch of mathematical sciences was formed in the late 19th and early 20th centuries. Motivated by problems in mathematical physics, the first steps in this field were taken by V. Volterra, R. GateallX, P. Levy and M. Frechet, among others (see the preface to Levy 2]). Nevertheless, the most fruitful direction in this field is the infinite dimensional integration theory initiated by N. Wiener and A. N. Kolmogorov which is closely related to the developments of the theory of stochastic processes. It was Wiener who constructed for the first time in 1923 a probability measure on the space of all continuous functions (i. e. the Wiener measure) which provided an ideal math ematical model for Brownian motion. Then some important properties of Wiener integrals, especially the quasi-invariance of Gaussian measures, were discovered by R. Cameron and W. Martin l, 2, 3]. In 1931, Kolmogorov l] deduced a second partial differential equation for transition probabilities of Markov processes order with continuous trajectories (i. e. diffusion processes) and thus revealed the deep connection between theories of differential equations and stochastic processes. The stochastic analysis created by K. Ito (also independently by Gihman 1]) in the forties is essentially an infinitesimal analysis for trajectories of stochastic processes. By virtue of Ito's stochastic differential equations one can construct diffusion processes via direct probabilistic methods and treat them as function als of Brownian paths (i. e. the Wiener functionals)."

Introduction to Infinite Dimensional Stochastic Analysis (Paperback, Softcover reprint of the original 1st ed. 2000): Zhi-yuan... Introduction to Infinite Dimensional Stochastic Analysis (Paperback, Softcover reprint of the original 1st ed. 2000)
Zhi-yuan Huang, Jia-an Yan
R2,878 Discovery Miles 28 780 Ships in 10 - 15 working days

The infinite dimensional analysis as a branch of mathematical sciences was formed in the late 19th and early 20th centuries. Motivated by problems in mathematical physics, the first steps in this field were taken by V. Volterra, R. GateallX, P. Levy and M. Frechet, among others (see the preface to Levy 2]). Nevertheless, the most fruitful direction in this field is the infinite dimensional integration theory initiated by N. Wiener and A. N. Kolmogorov which is closely related to the developments of the theory of stochastic processes. It was Wiener who constructed for the first time in 1923 a probability measure on the space of all continuous functions (i. e. the Wiener measure) which provided an ideal math ematical model for Brownian motion. Then some important properties of Wiener integrals, especially the quasi-invariance of Gaussian measures, were discovered by R. Cameron and W. Martin l, 2, 3]. In 1931, Kolmogorov l] deduced a second partial differential equation for transition probabilities of Markov processes order with continuous trajectories (i. e. diffusion processes) and thus revealed the deep connection between theories of differential equations and stochastic processes. The stochastic analysis created by K. Ito (also independently by Gihman 1]) in the forties is essentially an infinitesimal analysis for trajectories of stochastic processes. By virtue of Ito's stochastic differential equations one can construct diffusion processes via direct probabilistic methods and treat them as function als of Brownian paths (i. e. the Wiener functionals)."

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
The Differentiated Classroom…
Carol Ann Tomlinson Paperback R834 R723 Discovery Miles 7 230
Cultural Diversity in the Workplace…
George Henderson Hardcover R3,201 Discovery Miles 32 010
Transdisciplinary Theory, Practice and…
Dena Fam, Linda Neuhauser, … Hardcover R4,994 Discovery Miles 49 940
E-Training and Development - Training…
Colin Barrow Paperback R324 R276 Discovery Miles 2 760
A Framework for Research on Professional…
Jeanne Tunks, Jane Neapolitan Paperback R1,113 Discovery Miles 11 130
Open and Social Learning in Impact…
Lidia Oliveira, Ana Luisa Rego Melro Hardcover R4,730 Discovery Miles 47 300
Design to Engage - How to Create and…
Beth Cougler Blom Hardcover R1,230 R1,048 Discovery Miles 10 480
Transdisciplinary Professional Learning…
Paul Gibbs Hardcover R3,583 R1,982 Discovery Miles 19 820
Boardroom Education - Training and…
Michel Syrett, Jean Lammiman Paperback R213 R184 Discovery Miles 1 840
Examining Student Retention and…
Samuel L Hinton, Antwon D Woods Hardcover R4,746 Discovery Miles 47 460

 

Partners