Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Collecting the latest developments in the field, Multimedia Data Mining: A Systematic Introduction to Concepts and Theory defines multimedia data mining, its theory, and its applications. Two of the most active researchers in multimedia data mining explore how this young area has rapidly developed in recent years. The book first discusses the theoretical foundations of multimedia data mining, presenting commonly used feature representation, knowledge representation, statistical learning, and soft computing techniques. It then provides application examples that showcase the great potential of multimedia data mining technologies. In this part, the authors show how to develop a semantic repository training method and a concept discovery method in an imagery database. They demonstrate how knowledge discovery helps achieve the goal of imagery annotation. The authors also describe an effective solution to large-scale video search, along with an application of audio data classification and categorization. This novel, self-contained book examines how the merging of multimedia and data mining research can promote the understanding and advance the development of knowledge discovery in multimedia data.
A culmination of the authors' years of extensive research on this topic, Relational Data Clustering: Models, Algorithms, and Applications addresses the fundamentals and applications of relational data clustering. It describes theoretic models and algorithms and, through examples, shows how to apply these models and algorithms to solve real-world problems. After defining the field, the book introduces different types of model formulations for relational data clustering, presents various algorithms for the corresponding models, and demonstrates applications of the models and algorithms through extensive experimental results. The authors cover six topics of relational data clustering: Clustering on bi-type heterogeneous relational data Multi-type heterogeneous relational data Homogeneous relational data clustering Clustering on the most general case of relational data Individual relational clustering framework Recent research on evolutionary clustering This book focuses on both practical algorithm derivation and theoretical framework construction for relational data clustering. It provides a complete, self-contained introduction to advances in the field.
A culmination of the authors? years of extensive research on this topic, Relational Data Clustering Models, Algorithms, and Applications addresses the fundamentals and applications of relational data clustering. It describes theoretic models and algorithms and, through examples, shows how to apply these models and algorithms to solve real-world problems. After defining the field, the book introduces different types of model formulations for relational data clustering, presents various algorithms for the corresponding models, and demonstrates applications of the models and algorithms through extensive experimental results. The authors cover six topics of relational data clustering:
This book focuses on both practical algorithm derivation and theoretical framework construction for relational data clustering. It provides a complete, self-contained introduction to advances in the field.
Collecting the latest developments in the field, Multimedia Data Mining: A Systematic Introduction to Concepts and Theory defines multimedia data mining, its theory, and its applications. Two of the most active researchers in multimedia data mining explore how this young area has rapidly developed in recent years. The book first discusses the theoretical foundations of multimedia data mining, presenting commonly used feature representation, knowledge representation, statistical learning, and soft computing techniques. It then provides application examples that showcase the great potential of multimedia data mining technologies. In this part, the authors show how to develop a semantic repository training method and a concept discovery method in an imagery database. They demonstrate how knowledge discovery helps achieve the goal of imagery annotation. The authors also describe an effective solution to large-scale video search, along with an application of audio data classification and categorization. This novel, self-contained book examines how the merging of multimedia and data mining research can promote the understanding and advance the development of knowledge discovery in multimedia data.
|
You may like...
|