Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
"Models of Computation for Heterogeneous Embedded Systems" presents a model of computation for heterogeneous embedded systems called DFCharts. It targets heterogeneous systems by combining finite state machines (FSM) with synchronous dataflow graphs (SDFG). FSMs are connected in the same way as in Argos (a Statecharts variant with purely synchronous semantics) using three operators: synchronous parallel, refinement and hiding. The fourth operator, called asynchronous parallel, is introduced in DFCharts to connect FSMs with SDFGs. In the formal semantics of DFCharts, the operation of an SDFG is represented as an FSM. Using this representation, SDFGs are merged with FSMs so that the behaviour of a complete DFCharts specification can be expressed as a single, flat FSM. This allows system properties to be verified globally. The practical application of DFCharts has been demonstrated by linking it to widely used system-level languages Java, Esterel and SystemC.
Field-programmable logic has been available for a number of years. The role of Field-Programmable Logic Devices (FPLDs) has evolved from simply implementing the system glue-logic' to the ability to implement very complex system functions, such as microprocessors and microcomputers. The speed with which these devices can be programmed makes them ideal for prototyping. Low production cost makes them competitive for small to medium volume productions. These devices make possible new sophisticated applications, and bring up new hardware/software trade-offs and diminish the traditional hardware/software demarcation line. Advanced design tools are being developed for automatic compilation of complex designs and routings to custom circuits. Digital Systems Design and Prototyping Using Field Programmable Logic covers the subjects of digital systems design and (FPLDs), combining them into an entity useful for designers in the areas of digital systems and rapid system prototyping. It is also useful for the growing community of engineers and researchers dealing with the exciting field of FPLDs, reconfigurable and programmable logic. The authors' goal is to bring these topics to students studying digital system design, computer design, and related subjects in order to show them how very complex circuits can be implemented at the desk. Digital Systems Design and Prototyping Using Field Programmable Logic makes a pioneering effort to present rapid prototyping and generation of computer systems using FPLDs. From the Foreword: This is a ground-breaking book that bridges the gap between digital design theory and practice. It provides a unifying terminology for describing FPLD technology. In addition to introducing the technology it also describes the design methodology and tools required to harness this technology. It introduces two hardware description languages (e.g. AHDL and VHDL). Design is best learned by practice and the book supports this notion with abundant case studies.' Daniel P. Siewiorek, Carnegie Mellon University CD-ROM INCLUDED! Digital Systems Design and Prototyping Using Field Programmable Logic, First Edition includes a CD-ROM that contains Altera's MAX+PLUS II 7.21 Student Edition Programmable Logic Development Software. MAX+PLUS II is a fully integrated design environment that offers unmatched flexibility and performance. The intuitive graphical interface is complemented by complete and instantly accessible on-line documentation, which makes learning and using MAX+PLUS II quick and easy. The MAX+PLUS II version 7.21 Student Edition offers the following features: Operates on PCs running Windows 3.1, Windows 95 and Windows NT 3.51 and 4.0. Graphical and text-based design entry, including the Altera Hardware Description Language (AHDL) and VHDL. Design compilation for Product-term (MAX 7000S) and look-up table (FLEX 10K) device architectures. Design verification with full timing simulation.
This book represents an attempt to treat three aspects of digital systems, design, prototyping and customization, in an integrated manner using two major technologies: VHSIC Hardware Description Language (VHDL) as a modeling and specification tool, and Field-Programmable Logic Devices (FPLDs) as an implementation technology. They together make a very powerful combination for complex digital systems rapid design and prototyping as the important steps towards manufacturing, or, in the case of feasible quantities, they also provide fast system manufacturing. Combining these two technologies makes possible implementation of very complex digital systems at the desk. VHDL has become a standard tool to capture features of digital systems in a form of behavioral, dataflow or structural models providing a high degree of flexibility. When augmented by a good simulator, VHDL enables extensive verification of features of the system under design, reducing uncertainties at the latter phases of design process. As such, it becomes an unavoidable modeling tool to model digital systems at various levels of abstraction.
Digital Systems Design and Prototyping: Using Field Programmable Logic and Hardware Description Languages, Second Edition covers the subject of digital systems design using two important technologies: Field Programmable Logic Devices (FPLDs) and Hardware Description Languages (HDLs). These two technologies are combined to aid in the design, prototyping, and implementation of a whole range of digital systems from very simple ones replacing traditional glue logic to very complex ones customized as the applications require. Three HDLs are presented: VHDL and Verilog, the widely used standard languages, and the proprietary Altera HDL (AHDL). The chapters on these languages serve as tutorials and comparisons are made that show the strengths and weaknesses of each language. A large number of examples are used in the description of each language providing insight for the design and implementation of FPLDs. The CD-ROM included with the book contains the Altera MAX+PLUS II development environment which is ready to compile and simulate all examples. With the addition of the Altera UP-1 prototyping board, all examples can be tested and verified in a real FPLD. Digital Systems Design and Prototyping: Using Field Programmable Logic and Hardware Description Languages, Second Edition is designed as an advanced level textbook as well as a reference for the professional engineer.
"Models of Computation for Heterogeneous Embedded Systems" presents a model of computation for heterogeneous embedded systems called DFCharts. It targets heterogeneous systems by combining finite state machines (FSM) with synchronous dataflow graphs (SDFG). FSMs are connected in the same way as in Argos (a Statecharts variant with purely synchronous semantics) using three operators: synchronous parallel, refinement and hiding. The fourth operator, called asynchronous parallel, is introduced in DFCharts to connect FSMs with SDFGs. In the formal semantics of DFCharts, the operation of an SDFG is represented as an FSM. Using this representation, SDFGs are merged with FSMs so that the behaviour of a complete DFCharts specification can be expressed as a single, flat FSM. This allows system properties to be verified globally. The practical application of DFCharts has been demonstrated by linking it to widely used system-level languages Java, Esterel and SystemC.
Digital Systems Design and Prototyping: Using Field Programmable Logic and Hardware Description Languages, Second Edition covers the subject of digital systems design using two important technologies: Field Programmable Logic Devices (FPLDs) and Hardware Description Languages (HDLs). These two technologies are combined to aid in the design, prototyping, and implementation of a whole range of digital systems from very simple ones replacing traditional glue logic to very complex ones customized as the applications require. Three HDLs are presented: VHDL and Verilog, the widely used standard languages, and the proprietary Altera HDL (AHDL). The chapters on these languages serve as tutorials and comparisons are made that show the strengths and weaknesses of each language. A large number of examples are used in the description of each language providing insight for the design and implementation of FPLDs. With the addition of the Altera UP-1 prototyping board, all examples can be tested and verified in a real FPLD. Digital Systems Design and Prototyping: Using Field Programmable Logic and Hardware Description Languages, Second Edition is designed as an advanced level textbook as well as a reference for the professional engineer.
Field-programmable logic has been available for a number of years. The role of Field-Programmable Logic Devices (FPLDs) has evolved from simply implementing the system 'glue-logic' to the ability to implement very complex system functions, such as microprocessors and microcomputers. The speed with which these devices can be programmed makes them ideal for prototyping. Low production cost makes them competitive for small to medium volume productions. These devices make possible new sophisticated applications, and bring up new hardware/software trade-offs and diminish the traditional hardware/software demarcation line. Advanced design tools are being developed for automatic compilation of complex designs and routings to custom circuits. Digital Systems Design and Prototyping Using Field Programmable Logic covers the subjects of digital systems design and (FPLDs), combining them into an entity useful for designers in the areas of digital systems and rapid system prototyping. It is also useful for the growing community of engineers and researchers dealing with the exciting field of FPLDs, reconfigurable and programmable logic.The authors' goal is to bring these topics to students studying digital system design, computer design, and related subjects in order to show them how very complex circuits can be implemented at the desk. Digital Systems Design and Prototyping Using Field Programmable Logic makes a pioneering effort to present rapid prototyping and generation of computer systems using FPLDs. From the Foreword: 'This is a ground-breaking book that bridges the gap between digital design theory and practice. It provides a unifying terminology for describing FPLD technology. In addition to introducing the technology it also describes the design methodology and tools required to harness this technology. It introduces two hardware description languages (e.g. AHDL and VHDL). Design is best learned by practice and the book supports this notion with abundant case studies.' Daniel P. Siewiorek, Carnegie Mellon University CD-ROM INCLUDED Digital Systems Design and Prototyping Using Field Programmable Logic, First Edition includes a CD-ROM that contains Altera's MAX+PLUS II 7.21 Student Edition Programmable Logic Development Software.MAX+PLUS II is a fully integrated design environment that offers unmatched flexibility and performance. The intuitive graphical interface is complemented by complete and instantly accessible on-line documentation, which makes learning and using MAX+PLUS II quick and easy. The MAX+PLUS II version 7.21 Student Edition offers the following features: * Operates on PCs running Windows 3.1, Windows 95 and Windows NT 3.51 and 4.0. * Graphical and text-based design entry, including the Altera Hardware Description Language (AHDL) and VHDL. * Design compilation for Product-term (MAX 7000S) and look-up table (FLEX 10K) device architectures. * Design verification with full timing simulation.
VHDL and FPLDs in Digital Systems Design, Prototyping and Customization treats three aspects of digital systems: design, prototyping and customization, in an integrated manner using two technologies. The two technologies are VHSIC Hardware Description Language (VHDL) and Field-Programmable Logic Devices (FPLDs). VHDL is used for modeling and specification; FPLDs are used for implementation. VHDL and FPLDs in Digital Systems Design, Prototyping and Customization is divided into three parts. Part I provides an introduction to the basic features of VHDL with emphasis on modeling and design. All types of VHDL models including behavioral, structural and dataflow models are presented. Part 2 is a bridge to designing and prototyping using FPLDs as the prototyping and implementation technology. Part 3 contains a number of examples and case studies that demonstrate the effectiveness of using VHDL and FPLDs in the design of real systems. VHDL and FPLDs in Digital Systems Design, Prototyping and Customization is an invaluable comprehensive reference for the digital designer. This work includes examples and software tied to real-world FPLDs.The reader can see how the material presented applies to real-world devices and can experiment with the software. Also included are large-scale designs like the FLIX microcomputer that demonstrates the power of VHDL.
|
You may like...
Heart Of A Strong Woman - From Daveyton…
Xoliswa Nduneni-Ngema, Fred Khumalo
Paperback
|