![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics
During its 2004 meeting in Warsaw the General Assembly of the International Union of Theoretical and Applied Mechanics (IUTAM) decided to support a proposal of the Georgian National Committee to hold in Tbilisi (Georgia), on April 23-27, 2007, the IUTAM Symposium on the Relation of Shell, Plate, Beam, and 3D Models, dedicated to the Centenary of Ilia Vekua. The sci- ti?c organization was entrusted to an international committee consisting of Philipppe G. Ciarlet (Hong Kong), the late Anatoly Gerasimovich Gorshkov (Russia),JornHansen(Canada),GeorgeV.Jaiani(Georgia,Chairman),Re- hold Kienzler (Germany), Herbert A. Mang (Austria), Paolo Podio-Guidugli (Italy), and Gangan Prathap (India). The main topics to be included in the scienti?c programme were c- sen to be: hierarchical, re?ned mathematical and technical models of shells, plates, and beams; relation of 2D and 1D models to 3D linear, non-linear and physical models; junction problems. The main aim of the symposium was to thoroughly discuss the relations of shell, plate, and beam models to the 3D physicalmodels.Inparticular,peculiaritiesofcuspedshells,plates,andbeams were to be emphasized and special attention paid to junction, multibody and ? uid-elastic shell (plate, beam) interaction problems, and their applications. The expected contributions of the invited participants were anticipated to be theoretical, practical, and numerical in character.
The emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications related to phenomena such as: boundary layer phenomena for viscous fluids, population dynamics,, dead core phenomena, etc. It addresses researchers and post-graduate students working at the interplay between mathematics and other fields of science and technology and is a comprehensive introduction to the theory of nonlinear partial differential equations and its main principles also presents their real-life applications in various contexts: mathematical physics, chemistry, mathematical biology, and population genetics. Based on the authors' original work, this volume provides an overview of the field, with examples suitable for researchers but also for graduate students entering research. The method of presentation appeals to readers with diverse backgrounds in partial differential equations and functional analysis. Each chapter includes detailed heuristic arguments, providing thorough motivation for the material developed later in the text. The content demonstrates in a firm way that partial differential equations can be used to address a large variety of phenomena occurring in and influencing our daily lives. The extensive reference list and index make this book a valuable resource for researchers working in a variety of fields and who are interested in phenomena modeled by nonlinear partial differential equations.
Chaos is a fascinating phenomenon that has been observed in nature, laboratory, and has been applied in various real-world applications. Chaotic systems are deterministic with no random elements involved yet their behavior appears to be random. Obser- tions of chaotic behavior in nature include weather and climate, the dynamics of sat- lites in the solar system, the time evolution of the magnetic field of celestial bodies, population growth in ecology, to mention only a few examples. Chaos has been observed in the laboratory in a number of systems such as electrical circuits, lasers, chemical reactions, fluid dynamics, mechanical systems, and magneto-mechanical devices. Chaotic behavior has also found numerous applications in electrical and communication engineering, information and communication technologies, biology and medicine. To the best of our knowledge, this is the first book edited on chaos applications in intelligent computing. To access the latest research related to chaos applications in intelligent computing, we launched the book project where researchers from all over the world provide the necessary coverage of the mentioned field. The primary obj- tive of this project was to assemble as much research coverage as possible related to the field by defining the latest innovative technologies and providing the most c- prehensive list of research references.
This book contains advanced-level research material in the area of lubrication theory and related aspects, presented by eminent researchers during the International Conference on Advances in Tribology and Engineering Systems (ICATES 2013) held at Gujarat Technological University, Ahmedabad, India during October 15 17, 2013. The material in this book represents the advanced field of tribology and reflects the work of many eminent researchers from both India and abroad. The treatment of the presentations is the result of the contributions of several professionals working in the industry and academia. This book will be useful for students, researchers, academicians, and professionals working in the area of tribology, in general, and bearing performance characteristics, in particular, especially from the point-of-view of design. This book will also appeal to researchers and professionals working in fluid-film lubrication and other practical applications of tribology. A wide range of topics has been included despite space and time constraints. Basic concepts and fundamentals techniques have been emphasized upon, while also including highly specialized topics and methods (such as nanotribology, bio-nanotribology). Care has been taken to generate interest for a wide range of readers, considering the interdisciplinary nature of the subject."
The historical and epistemological reflection on the applications of mathematical techniques to the Sciences of Nature - physics, biology, chemistry, and geology - today generates attention and interest because of the increasing use of mathematical models in all sciences and their high level of sophistication. The goal of the meeting and the papers collected in this proceedings volume is to give physicists, biologists, mathematicians, and historians of science the opportunity to share information on their work and reflect on the and mathematical models are used in the natural sciences today and in way mathematics the past. The program of the workshop combines the experience of those working on current scientific research in many different fields with the historical analysis of previous results. We hope that some novel interdisciplinary, philosophical, and epistemological considerations will follow from the two aspects of the workshop, the historical and the scientific. This proceedings includes papers presented at the meeting and some of the results of the discussions that took place during the workshop. We wish to express our gratitude to Sergio Monteiro for all his work, which has been essential for the successful publication of these proceedings. We also want to thank the editors of Kluwer AcademidPlenum Publishers for their patience and constant help, and in particular Beth Kuhne and Roberta Klarreich. Our thanks to the fallowing institutions: -Amministrazione Comunale di Arcidosso -Comunita Montana del Monte Amiata .Center for the History of Physics, UCLA -Centre F."
Simulation of materials at the atomistic level is an important tool in studying microscopic structures and processes. The atomic interactions necessary for the simulations are correctly described by Quantum Mechanics, but the size of systems and the length of processes that can be modelled are still limited. The framework of Gaussian Approximation Potentials that is developed in this thesis allows us to generate interatomic potentials automatically, based on quantum mechanical data. The resulting potentials offer several orders of magnitude faster computations, while maintaining quantum mechanical accuracy. The method has already been successfully applied for semiconductors and metals.
With the use of ecological models, managers and decision makers can make sure that the ecological systems affected by their decisions are accurately represented. Unfortunately, the most relevant ecological science and modeling techniques are often not used because managers are not familiar with them or find them inappropriate for their circumstances. The authors of this volume hope to close the gap between the state of the art in ecological modeling and the state of the practice in the use of models as decision-making tools. It will serve as a readable introduction to modeling for people involved in resource management and will also review specific applications of interest to more experienced modelers. The first chapters detail several successful uses of ecological models in resource management. There are then five pairs of chapters addressing important issues in ecological modeling, including barriers to the use of modeling in decision making, evolving approaches in the field, effective use of data, the toolkit approach to management, and the various scientific and technological investments required for productive modeling. Ecologists and other scientists will learn how best to focus their research for practical, real-world applications, and resource managers and other practitioners will learn the most appropriate methods of understanding dynamic processes and making projections about the implications of their decisions.
OndrejMajer, Ahti-VeikkoPietarinen, andTeroTulenheimo 1 Games and logic in philosophy Recent years have witnessed a growing interest in the unifying methodo- gies over what have been perceived as pretty disparate logical 'systems', or else merely an assortment of formal and mathematical 'approaches' to phi- sophical inquiry. This development has largely been fueled by an increasing dissatisfaction to what has earlier been taken to be a straightforward outcome of 'logical pluralism' or 'methodological diversity'. These phrases appear to re ect the everyday chaos of our academic pursuits rather than any genuine attempt to clarify the general principles underlying the miscellaneous ways in which logic appears to us. But the situation is changing. Unity among plurality is emerging in c- temporary studies in logical philosophy and neighbouring disciplines. This is a necessary follow-up to the intensive research into the intricacies of logical systems and methodologies performed over the recent years. The present book suggests one such peculiar but very unrestrained meth- ological perspective over the eld of logic and its applications in mathematics, language or computation: games. An allegory for opposition, cooperation and coordination, games are also concrete objects of formal study.
This volume presents a collection of papers covering applications from a wide range of systems with infinitely many degrees of freedom studied using techniques from stochastic and infinite dimensional analysis, e.g. Feynman path integrals, the statistical mechanics of polymer chains, complex networks, and quantum field theory. Systems of infinitely many degrees of freedom create their particular mathematical challenges which have been addressed by different mathematical theories, namely in the theories of stochastic processes, Malliavin calculus, and especially white noise analysis. These proceedings are inspired by a conference held on the occasion of Prof. Ludwig Streit's 75th birthday and celebrate his pioneering and ongoing work in these fields.
Shafarevich's Basic Algebraic Geometry has been a classic and
universally used introduction to the subject since its first
appearance over 40 years ago. As the translator writes in a
prefatory note, For all advanced undergraduate and beginning
graduate] students, and for the many specialists in other branches
of math who need a liberal education in algebraic geometry,
Shafarevich s book is a must.'' The third edition, in addition to
some minor corrections, now offers a new treatment of the
Riemann--Roch theorem for curves, including a proof from first
principles.
Adaptivity and learning have in recent decades become a common concern of scientific disciplines. These issues have arisen in mathematics, physics, biology, informatics, economics, and other fields more or less simultaneously. The aim of this publication is the interdisciplinary discourse on the phenomenon of learning and adaptivity. Different perspectives are presented and compared to find fruitful concepts for the disciplines involved. The authors select problems showing representative traits concerning the frame up, the methods and the achievements rather than to present extended overviews.
The 91st London Mathematical Society Durham Symposium took place from July 5th to 15th 2010, with more than 100 international participants attending. The Symposium focused on Numerical Analysis of Multiscale Problems and this book contains 10 invited articles from some of the meeting's key speakers, covering a range of topics of contemporary interest in this area. Articles cover the analysis of forward and inverse PDE problems in heterogeneous media, high-frequency wave propagation, atomistic-continuum modeling and high-dimensional problems arising in modeling uncertainty. Novel upscaling and preconditioning techniques, as well as applications to turbulent multi-phase flow, and to problems of current interest in materials science are all addressed. As such this book presents the current state-of-the-art in the numerical analysis of multiscale problems and will be of interest to both practitioners and mathematicians working in those fields.
The 6th ACIS International Conference on Software Engineering, Research, Management and Applications (SERA 2008) was held in Prague in the Czech Republic on August 20 - 22. SERA '08 featured excellent theoretical and practical contributions in the areas of formal methods and tools, requirements engineering, software process models, communication systems and networks, software quality and evaluation, software engineering, networks and mobile computing, parallel/distributed computing, software testing, reuse and metrics, database retrieval, computer security, software architectures and modeling. Our conference officers selected the best 17 papers from those papers accepted for presentation at the conference in order to publish them in this volume. The papers were chosen based on review scores submitted by members or the program committee, and underwent further rounds of rigorous review.
This book adresses the needs of both researchers and practitioners. It combines a rigorous overview of the mathematics of financial markets with an insight into the practical application of these models to the risk and portfolio management of interest-rate derivatives. It can also serve as a valuable textbook for graduate and PhD students in mathematics who want to get some knowledge about financial markets. The first part of the book is an exposition of advanced stochastic calculus. It defines the theoretical framework for the pricing and hedging of contingent claims with a special focus on interest-rate markets. The second part covers a selection of short and long-term oriented risk measures as well as their application to the risk management of interest -rate portfolios. Interesting and comprehensive case studies are provided to illustrate the theoretical concepts.
The field of sensory science, the perception science of the food industry, increasingly requires a working knowledge of statistics for the evaluation of data. However, most sensory scientists are not also expert statisticians. This highly readable book presents complex statistical tools such as Anova in a way that is easily understood by the practising sensory scientist. In Analysis of Variance for sensory Data, written jointly by statisticians and food scientists, the reader is taken by the hand and guided through tests such as Anova. Using real examples from the food industry, practical implications are stressed rather than the theoretical background. The result of this is that the reader will be able to apply advanced Anova teqhniques to a variety of problems and learn how to interpret the results. The book is intended as a workbook for all students of sensory analysis who would gain from a knowledge of statistical techniques.
Based on eight extensive lectures selected from those given at the renowned Chris Engelbrecht Summer School in Theoretical Physics in South Africa, this text on the theoretical foundations of quantum information processing and communication covers an array of topics, including quantum probabilities, open systems, and non-Markovian dynamics and decoherence. It also addresses quantum information and relativity as well as testing quantum mechanics in high energy physics. Because these self-contained lectures discuss topics not typically covered in advanced undergraduate courses, they are ideal for post-graduate students entering this field of research. Some of the lectures are written at a more introductory level while others are presented as tutorials that survey recent developments and results in various subfields.
The first part is devoted to the topic of quantum gravity and string theories, mainly concerned with recent authoritative results in the study of discretizations in classical and quantum general relativity, non-commutative theories of gravity, (2+1)-dimensional supergravity, and Berezin description of Kaehler quotients. The field to particle transition problem is also considered. The second part deals with cosmology and black holes. Here, cosmological, inflationary, and braneworld scenarios are investigated. Moreover, some scalar field models for the dark matter content of the universe as well as new models of protostellar collapse and fragmentation are presented. This part includes also a study of de Sitter/Anti-de Sitter phase transition for black holes, an understanding of hairy black holes and an improvement of the no-hair theorem proof for the Proca field. The third part is devoted to exact solutions, in particular
classical and quantum cosmological solutions in scalar-tensor
theories. Additionally, a discussion about conformally flat
axisymmetric spacetimes and some considerations on accelerated
expansion in scalar-tensor theories are presented.
This book presents contributions on the most active lines of recent advanced research in the field of nonlinear mechanics and physics selected from the 4th International Conference on Structural Nonlinear Dynamics and Diagnosis. It includes fifteen chapters by outstanding scientists, covering various aspects of applications, including road tanker dynamics and stability, simulation of abrasive wear, energy harvesting, modeling and analysis of flexoelectric nanoactuator, periodic Fermi-Pasta-Ulam problems, nonlinear stability in Hamiltonian systems, nonlinear dynamics of rotating composites, nonlinear vibrations of a shallow arch, extreme pulse dynamics in mode-locked lasers, localized structures in a photonic crystal fiber resonator, nonlinear stochastic dynamics, linearization of nonlinear resonances, treatment of a linear delay differential equation, and fractional nonlinear damping. It appeals to a wide range of experts in the field of structural nonlinear dynamics and offers researchers and engineers an introduction to the challenges posed by nonlinearities in the development of these topics
* Metivier is an expert in the field of pdes/math physics, with a particular emphasis on shock waves. * New monograph focuses on mathematical methods, models, and applications of boundary layers, present in many problems of physics, engineering, fluid mechanics. * Metivier has good Birkhauser track record: one of the main authors of "Advances in the Theory of Shock Waves" (Freistuehler/Szepessy, eds, 4187-4). * Manuscript endorsed by N. Bellomo, MSSET series editor...should be a good sell to members of MSSET community, who by-in-large are based in Europe. * Included are self-contained introductions to different topics such as hyperbolic boundary value problems, parabolic systems, WKB methods, construction of profiles, introduction to the theory of Evans' functions, and energy methods with Kreiss' symmetrizers.
The 20th century saw tremendous achievements and progress in
science and
Dissipative Quantum Chaos and Decoherence provides an overview of the state of the art of research in this exciting field. The main emphasis is on the development of a semiclassical formalism that allows one to incorporate the effect of dissipation and decoherence in a precise, yet tractable way into the quantum mechanics of classically chaotic systems. The formalism is employed to reveal how the spectrum of the quantum mechanical propagator of a density matrix is determined by the spectrum of the corresponding classical propagator of phase space density. Simple quantum--classical hybrid formulae for experimentally relevant correlation functions and time-dependent expectation values of observables are derived. The problem of decoherence is treated in detail, and highly unexpected cases of very slow decoherence are revealed, with important consequences for the long-debated realizability of Schrödinger cat states as well as for the construction of quantum computers.
Customarily, much of traditional mathematics curricula was predicated on 'by hand' calculation. However, ubiquitous computing requires us to refresh what we teach and how it is taught. This is especially true in the rapidly broadening fields of Data Mining and Artificial Intelligence, and also in fields such as Bioinformatics, which all require the use of Singular Value Decomposition (SVD). Indeed, SVD is sometimes called the jewel in the crown of linear algebra. Linear Algebra for 21st Century Applications adapts linear algebra to best suit modern teaching and application, and it places the SVD as central to the text early on to empower science and engineering students to learn and use potent practical and theoretical techniques. No rigour is lost in this new route as the text demonstrates that most theory is better proved with an SVD. In addition to this, there is earlier introduction, development, and emphasis on orthogonality that is vital in so many applied disciplines throughout science, engineering, computing and increasingly within the social sciences. To assimilate the so-called third arm of science, namely computing, Matlab/Octave computation is explicitly integrated into developing the mathematical concepts and applications. A strong graphical emphasis takes advantage of the power of visualisation in the human brain and examples are included to exhibit modern applications of linear algebra, such as GPS, text mining, and image processing. Active learning is encouraged with exercises throughout that are aimed to enhance ectures, quizzes, or 'flipped' teaching.
This book, which is based on several courses of lectures given by the author at the Independent University of Moscow, is devoted to Sobolev-type spaces and boundary value problems for linear elliptic partial differential equations. Its main focus is on problems in non-smooth (Lipschitz) domains for strongly elliptic systems. The author, who is a prominent expert in the theory of linear partial differential equations, spectral theory and pseudodifferential operators, has included his own very recent findings in the present book. The book is well suited as a modern graduate textbook, utilizing a thorough and clear format that strikes a good balance between the choice of material and the style of exposition. It can be used both as an introduction to recent advances in elliptic equations and boundary value problems and as a valuable survey and reference work. It also includes a good deal of new and extremely useful material not available in standard textbooks to date. Graduate and post-graduate students, as well as specialists working in the fields of partial differential equations, functional analysis, operator theory and mathematical physics will find this book particularly valuable.
This book details a systematic characteristics-based finite element procedure to investigate incompressible, free-surface and compressible flows. Several sections derive the Fluid Dynamics equations from first thermo-mechanics principles and develop this multi-dimensional and infinite-directional upstream procedure by combining a finite element discretization with an implicit non-linearly stable Runge-Kutta time integration for the numerical solution of the Euler and Navier Stokes equations. |
You may like...
A Brief Introduction to Topology and…
Antonio Sergio Teixeira Pires
Paperback
R756
Discovery Miles 7 560
Mathematical and Physical Simulation of…
M. Pietrzyk, L. Cser, …
Hardcover
R4,188
Discovery Miles 41 880
Stochastic Analysis of Mixed Fractional…
Yuliya Mishura, Mounir Zili
Hardcover
Mathematics For Engineering Students
Ramoshweu Solomon Lebelo, Radley Kebarapetse Mahlobo
Paperback
R397
Discovery Miles 3 970
Dark Silicon and Future On-chip Systems…
Suyel Namasudra, Hamid Sarbazi-Azad
Hardcover
R3,940
Discovery Miles 39 400
Multiscale Modeling of Vascular Dynamics…
Huilin Ye, Zhiqiang Shen, …
Paperback
R750
Discovery Miles 7 500
Modelling and Control in Biomedical…
David Dagan Feng, Janan Zaytoon
Paperback
|