![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics
Econometric theory, as presented in textbooks and the econometric literature generally, is a somewhat disparate collection of findings. Its essential nature is to be a set of demonstrated results that increase over time, each logically based on a specific set of axioms or assumptions, yet at every moment, rather than a finished work, these inevitably form an incomplete body of knowledge. The practice of econometric theory consists of selecting from, applying, and evaluating this literature, so as to test its applicability and range. The creation, development, and use of computer software has led applied economic research into a new age. This book describes the history of econometric computation from 1950 to the present day, based upon an interactive survey involving the collaboration of the many econometricians who have designed and developed this software. It identifies each of the econometric software packages that are made available to and used by economists and econometricians worldwide.
Dedicated to the Russian mathematician Albert Shiryaev on his 70th birthday, this is a collection of papers written by his former students, co-authors and colleagues. The book represents the modern state of art of a quickly maturing theory and will be an essential source and reading for researchers in this area. Diversity of topics and comprehensive style of the papers make the book attractive for PhD students and young researchers.
In today's global economy, supply chains are an essential ingredient to corporate survival and growth. Operations strategy in supply chains must assume an ever-expanding and strategic role of risks that modern enterprises face when they operate in an interdependent supply chain environment. These operational and strategic facets entail a brand new set of operational problems and risks that have not always been understood or managed very well. It falls to supply chain managers to identify and to educate corporate managers on what these critical operational problems and risks involve. This book provides business students and practitioners with the means to understand, to model and to analyze these outstanding issues and problems that are the essential elements in managing supply chains today. This book will consider these problems in depth and draw essential conclusions regarding their management in supply chains. As a textbook treatment, it will examine traditional operational problems, expressing them in a strategic context, understanding their complexity, and recognizing their interdependency with other firms within a supply-chain environment. Used throughout the book will be application examples that illustrate all the aspects of dealing with and solving these kinds of problems. The content of SUPPLY CHAIN GAMES: Operations Management and Risk Valuation is presented in three sections, each of which will emphasize important facets of supply chain management operations. (1) Supply chains and operations modeling and management section will provide static and time models and their gradual extension to a supply chain environment. The section will give special attention tothe new concerns and issues at this level of analysis. (2) Inter-temporal supply chain management section will address this aspect as differential games. The differential games will be presented as natural continuous-time extensions of static models so that the effect of various types of dynamics on supply chains can be assessed and insights can be developed. (3) Risk and supply chain management section will deal with risk and supply chains as well as providing numerous applications regarding the management of interdependent operations and quality in a supply chain environment.
Arguably, many industrial optimization problems are of the
multiobjective type. The present work, after providing a survey of
the state of the art in multiobjective optimization, gives new
insight into this important mathematical field by consequently
taking up the viewpoint of differential geometry. This approach,
unprecedented in the literature, very naturally results in a
generalized homotopy method for multiobjective optimization which
is theoretically well-founded and numerically efficient. The power
of the new method is demonstrated by solving two real-life problems
of industrial optimization.
Soft computing has provided sophisticated methodologies for the development of intelligent decision support systems. Fast advances in soft computing technologies, such as fuzzy logic and systems, artificial neural networks and evolutionary computation, have made available powerful problem representation and modelling paradigms, and learning and optimisation mechanisms for addressing modern decision making issues. This book provides a comprehensive coverage of up-to-date conceptual frameworks in broadly perceived decision support systems and successful applications. Different from other existing books, this volume predominately focuses on applied decision support with soft computing. Areas covered include planning, management finance and administration in both the private and public sectors.
Stochastic differential equations (SDEs) are a powerful tool in science, mathematics, economics and finance. This book will help the reader to master the basic theory and learn some applications of SDEs. In particular, the reader will be provided with the backward SDE technique for use in research when considering financial problems in the market, and with the reflecting SDE technique to enable study of optimal stochastic population control problems. These two techniques are powerful and efficient, and can also be applied to research in many other problems in nature, science and elsewhere.
During the past decade, geneticists have cloned scores of Mendelian disease genes and constructed a rough draft of the entire human genome. The unprecedented insights into human disease and evolution offered by mapping, cloning, and sequencing will transform medicine and agriculture. This revolution depends vitally on the contributions of applied mathematicians, statisticians, and computer scientists. Mathematical and Statistical Methods for Genetic Analysis is written to equip students in the mathematical sciences to understand and model the epidemiological and experimental data encountered in genetics research. Mathematical, statistical, and computational principles relevant to this task are developed hand in hand with applications to population genetics, gene mapping, risk prediction, testing of epidemiological hypotheses, molecular evolution, and DNA sequence analysis. Many specialized topics are covered that are currently accessible only in journal articles. This second edition expands the original edition by over 100 pages and includes new material on DNA sequence analysis, diffusion processes, binding domain identification, Bayesian estimation of haplotype frequencies, case-control association studies, the gamete competition model, QTL mapping and factor analysis, the Lander-Green-Kruglyak algorithm of pedigree analysis, and codon and rate variation models in molecular phylogeny. Sprinkled throughout the chapters are many new problems. Kenneth Lange is Professor of Biomathematics and Human Genetics at the UCLA School of Medicine. At various times during his career, he has held appointments at the University of New Hampshire, MIT, Harvard, and the University of Michigan. While at the University of Michigan, he was the Pharmacia & Upjohn Foundation Professor of Biostatistics. His research interests include human genetics, population modeling, biomedical imaging, computational statistics, and applied stochastic processes. Springer-Verlag published his book Numerical Analysis for Statisticians in 1999.
This book constitutes the proceedings of the 2000 Howard conference on "Infinite Dimensional Lie Groups in Geometry and Representation Theory." It presents some important recent developments in this area. It opens with a topological characterization of regular groups, treats among other topics the integrability problem of various infinite dimensional Lie algebras, presents substantial contributions to important subjects in modern geometry, and concludes with interesting applications to representation theory. The book should be a new source of inspiration for advanced graduate students and established researchers in the field of geometry and its applications to mathematical physics.
This important collection presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, time-delay, uncertainty, and bio-network dynamics. Nonlinear Dynamics and Complexity equips readers to appreciate this increasingly main-stream approach to understanding complex phenomena in nonlinear systems as they are examined in a broad array of disciplines. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering.
The main focus of this book is on different topics in probability theory, partial differential equations and kinetic theory, presenting some of the latest developments in these fields. It addresses mathematical problems concerning applications in physics, engineering, chemistry and biology that were presented at the Third International Conference on Particle Systems and Partial Differential Equations, held at the University of Minho, Braga, Portugal in December 2014. The purpose of the conference was to bring together prominent researchers working in the fields of particle systems and partial differential equations, providing a venue for them to present their latest findings and discuss their areas of expertise. Further, it was intended to introduce a vast and varied public, including young researchers, to the subject of interacting particle systems, its underlying motivation, and its relation to partial differential equations. This book will appeal to probabilists, analysts and those mathematicians whose work involves topics in mathematical physics, stochastic processes and differential equations in general, as well as those physicists whose work centers on statistical mechanics and kinetic theory.
New approaches are needed that could move us towards developing effective systems for problem solving and decision making, systems that can deal with complex and ill-structured situations, systems that can function in information rich environments, systems that can cope with imprecise information, systems that can rely on their knowledge and learn from experience - i.e. intelligent systems. One of the main efforts in intelligent systems development is focused on knowledge and information management which is regarded as the crucial issue in smart decision making support. The 13 Chapters of this book represent a sample of such effort. The overall aim of this book is to provide guidelines to develop tools for smart processing of knowledge and information. Still, the guide does not presume to give ultimate answers. Rather, it poses ideas and case studies to explore and the complexities and challenges of modern knowledge management issues. It also encourages its reader to become aware of the multifaceted interdisciplinary character of such issues. The premise of this book is that its reader will leave it with a heightened ability to think - in different ways - about developing, evaluating, and supporting intelligent knowledge and information management systems in real life based environment.
This volume is the proceedings of the 4th International Conference on Cognitive Neurodynamics (ICCN2013) held in Sweden in 2013. The included papers reflect the large span of research presented and are grouped in ten parts that are organized essentially in a top-down structure. The first parts deal with social/interactive (I) and mental (II) aspects of brain functions and their relation to perception and cognition (III). Next, more specific aspects of sensory systems (IV) and neural network dynamics of brain functions (V), including the effects of oscillations, synchronization and synaptic plasticity (VI), are addressed, followed by papers particularly emphasizing the use of neural computation and information processing (VII). With the next two parts, the levels of cellular and intracellular processes (VIII) and finally quantum effects (IX) are reached. The last part (X) is devoted to the contributions invited by the Dynamic Brain Forum (DBF), which was co-organized with ICCN2013.
The aim of this book is to present the theory and applications of the relativistic Boltzmann equation in a self-contained manner, even for those readers who have no familiarity with special and general relativity. Though an attempt is made to present the basic concepts in a complete fashion, the style of presentation is chosen to be appealing to readers who want to understand how kinetic theory is used for explicit calculations. The book will be helpful not only as a textbook for an advanced course on relativistic kinetic theory but also as a reference for physicists, astrophysicists and applied mathematicians who are interested in the theory and applications of the relativistic Boltzmann equation.
Convexity of sets in linear spaces, and concavity and convexity of functions, lie at the root of beautiful theoretical results that are at the same time extremely useful in the analysis and solution of optimization problems, including problems of either single objective or multiple objectives. Not all of these results rely necessarily on convexity and concavity; some of the results can guarantee that each local optimum is also a global optimum, giving these methods broader application to a wider class of problems. Hence, the focus of the first part of the book is concerned with several types of generalized convex sets and generalized concave functions. In addition to their applicability to nonconvex optimization, these convex sets and generalized concave functions are used in the book's second part, where decision-making and optimization problems under uncertainty are investigated. Uncertainty in the problem data often cannot be avoided when dealing with practical problems. Errors occur in real-world data for a host of reasons. However, over the last thirty years, the fuzzy set approach has proved to be useful in these situations. It is this approach to optimization under uncertainty that is extensively used and studied in the second part of this book. Typically, the membership functions of fuzzy sets involved in such problems are neither concave nor convex. They are, however, often quasiconcave or concave in some generalized sense. This opens possibilities for application of results on generalized concavity to fuzzy optimization. Despite this obvious relation, applying the interface of these two areas has been limited to date. It is hoped that the combination of ideas and results from the field of generalized concavity on the one hand and fuzzy optimization on the other hand outlined and discussed in Generalized Concavity in Fuzzy Optimization and Decision Analysis will be of interest to both communities. Our aim is to broaden the classes of problems that the combination of these two areas can satisfactorily address and solve.
This book presents the refereed proceedings of the Twelfth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at Stanford University (California) in August 2016. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising in particular, in finance, statistics, computer graphics and the solution of PDEs.
This book is based on the outcome of the "2012 Interdisciplinary Symposium on Complex Systems" held at the island of Kos. The book consists of 12 selected papers of the symposium starting with a comprehensive overview and classification of complexity problems, continuing by chapters about complexity, its observation, modeling and its applications to solving various problems including real-life applications. More exactly, readers will have an encounter with the structural complexity of vortex flows, the use of chaotic dynamics within evolutionary algorithms, complexity in synthetic biology, types of complexity hidden inside evolutionary dynamics and possible controlling methods, complexity of rugged landscapes, and more. All selected papers represent innovative ideas, philosophical overviews and state-of-the-art discussions on aspects of complexity. The book will be useful as instructional material for senior undergraduate and entry-level graduate students in computer science, physics, applied mathematics and engineering-type work in the area of complexity. The book will also be valuable as a resource of knowledge for practitioners who want to apply complexity to solve real-life problems in their own challenging applications. The authors and editors hope that readers will be inspired to do their own experiments and simulations, based on information reported in this book, thereby moving beyond the scope of the book.
Applied Time Series Analysis and Innovative Computing contains the applied time series analysis and innovative computing paradigms, with frontier application studies for the time series problems based on the recent works at the Oxford University Computing Laboratory, University of Oxford, the University of Hong Kong, and the Chinese University of Hong Kong. The monograph was drafted when the author was a post-doctoral fellow in Harvard School of Engineering and Applied Sciences, Harvard University. It provides a systematic introduction to the use of innovative computing paradigms as an investigative tool for applications in time series analysis. Applied Time Series Analysis and Innovative Computing offers the state of art of tremendous advances in applied time series analysis and innovative computing paradigms and also serves as an excellent reference work for researchers and graduate students working on applied time series analysis and innovative computing paradigms.
Arc Routing: Theory, Solutions and Applications is about arc traversal and the wide variety of arc routing problems, which has had its foundations in the modern graph theory work of Leonhard Euler. Arc routing methods and computation has become a fundamental optimization concept in operations research and has numerous applications in transportation, telecommunications, manufacturing, the Internet, and many other areas of modern life. The book draws from a variety of sources including the traveling salesman problem (TSP) and graph theory, which are used and studied by operations research, engineers, computer scientists, and mathematicians. In the last ten years or so, there has been extensive coverage of arc routing problems in the research literature, especially from a graph theory perspective; however, the field has not had the benefit of a uniform, systematic treatment. With this book, there is now a single volume that focuses on state-of-the-art exposition of arc routing problems, that explores its graph theoretical foundations, and that presents a number of solution methodologies in a variety of application settings. Moshe Dror has succeeded in working with an elite group of ARC routing scholars to develop the highest quality treatment of the current state-of-the-art in arc routing.
The Handbook of Mathematical Fluid Dynamics is a compendium of
essays that provides a survey of the major topics in the subject.
Each article traces developments, surveys the results of the past
decade, discusses the current state of knowledge and presents major
future directions and open problems. Extensive bibliographic
material is provided. The book is intended to be useful both to
experts in the field and to mathematicians and other scientists who
wish to learn about or begin research in mathematical fluid
dynamics. The Handbook illuminates an exciting subject that
involves rigorous mathematical theory applied to an important
physical problem, namely the motion of fluids.
Covering one of the fastest growing areas of applied mathematics, Nonlinear Dynamics and Chaos: Second Edition, is a fully updated edition of this highly respected text. Covering a breadth of topics, ranging from the basic concepts to applications in the physical sciences, the book is highly illustrated and written in a clear and comprehensible style.
The articles in this volume summarize the research results obtained in the former SFB 359 "Reactive Flow, Diffusion and Transport" which has been supported by the DFG over the period 1993-2004. The main subjects are physical-chemical processes sharing the difficulty of interacting diffusion, transport and reaction which cannot be considered separately. Typical examples are the chemical processes in flow reactors and in the catalytic combustion at surfaces. Further examples are models of star formation including diffusive mass transport, energy radiation and dust formation and the polluting transport in soil and waters. For these complex processes mathematical models are established and numerically simulated. The modeling uses multiscale techniques for nonlinear differential equations while for the numerical simulation and optimization goal-oriented mesh and model adaptivity, multigrid techniques and advanced Newton-type methods are developed combined with parallelization. This modeling and simulation is accompanied by experiments.
The present volume celebrates the 60th birthday of Professor Giovanni Paolo Galdi and honors his remarkable contributions to research in the ?eld of Mathematical Fluid Mechanics. The book contains a collection of 35 peer reviewed papers, with authors from 20 countries, re?ecting the worldwide impact and great inspiration by his work over the years. These papers were selected from invited lectures and contributed talks presented at the International Conference on Mathematical Fluid Mechanics held in Estoril, Portugal, May 21-25, 2007 and organized on the oc- sion of Professor Galdi's 60th birthday. We express our gratitude to all the authors and reviewers for their important contributions. Professor Galdi devotes his career to research on the mathematical analysis of the Navier-Stokes equations and non-Newtonian ?ow problems, with special emphasis on hydrodynamic stability and ?uid-particle interactions, impressing the worldwide mathematical communities with his results. His numerous contributions have laid down signi?cant milestones in these ?elds, with a great in?uence on interdis- plinary research communities. He has advanced the careers of numerous young researchers through his generosity and encouragement, some directly through int- lectual guidance and others indirectly by pairing them with well chosen senior c- laborators. A brief review of Professor Galdi's activities and some impressions by colleagues and friends are included here.
This book discusses recent developments and contemporary research in mathematics, statistics and their applications in computing. All contributing authors are eminent academicians, scientists, researchers and scholars in their respective fields, hailing from around the world. The conference has emerged as a powerful forum, offering researchers a venue to discuss, interact and collaborate and stimulating the advancement of mathematics and its applications in computer science. The book will allow aspiring researchers to update their knowledge of cryptography, algebra, frame theory, optimizations, stochastic processes, compressive sensing, functional analysis, complex variables, etc. Educating future consumers, users, producers, developers and researchers in mathematics and computing is a challenging task and essential to the development of modern society. Hence, mathematics and its applications in computer science are of vital importance to a broad range of communities, including mathematicians and computing professionals across different educational levels and disciplines.
This thesis presents a study of strong stratification and turbulence collapse in the planetary boundary layer, opening a new avenue in this field. It is the first work to study all regimes of stratified turbulence in a unified simulation framework without a break in the paradigms for representation of turbulence. To date, advances in our understanding and the parameterization of turbulence in the stable boundary layer have been hampered by difficulties simulating the strongly stratified regime, and the analysis has primarily been based on field measurements. The content presented here changes that paradigm by demonstrating the ability of direct numerical simulation to address this problem, and by doing so to remove the uncertainty of turbulence models from the analysis. Employing a stably stratified Ekman layer as a simplified physical model of the stable boundary layer, the three stratification regimes observed in nature- weakly, intermediately and strongly stratified-are reproduced, and the data is subsequently used to answer key, long-standing questions. The main part of the book is organized in three sections, namely a comprehensive introduction, numerics, and physics. The thesis ends with a clear and concise conclusion that distills specific implications for the study of the stable boundary layer. This structure emphasizes the physical results, but at the same time gives relevance to the technical aspects of numerical schemes and post-processing tools. The selection of the relevant literature during the introduction, and its use along the work appropriately combines literature from two research communities: fluid dynamics, and boundary-layer meteorology.
This thorough yet understandable introduction to the boundary element method presents an attractive alternative to the finite element method. It not only explains the theory but also presents the implementation of the theory into computer code, the code in FORTRAN 95 can be freely downloaded. The book also addresses the issue of efficiently using parallel processing hardware in order to considerably speed up the computations for large systems. The applications range from problems of heat and fluid flow to static and dynamic elasto-plastic problems in continuum mechanics. |
You may like...
Justification in a Post-Christian…
Carl-Henric Grenholm, Goeran Gunner
Hardcover
Ellen Harmon White - American Prophet
Terrie Dopp Aamodt, Gary Land, …
Hardcover
R3,857
Discovery Miles 38 570
|