![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics
The book presents twelve state of the art contributions in the field of numerical modeling of materials subjected to large strain, high strain rates, large pressure and high stress triaxialities, organized into two sections. The first part is focused on high strain rate-high pressures such as those occurring in impact dynamics and shock compression related phenomena, dealing with material response identification, advanced modeling incorporating microstructure and damage, stress waves propagation in solids and structures response under impact. The latter part is focused on large strain-low strain rates applications such as those occurring in technological material processing, dealing with microstructure and texture evolution, material response at elevated temperatures, structural behavior under large strain and multi axial state of stress.
This short monograph presents the theory of electromagnetic pulses in a simple and physical way. All pulses discussed are exact solutions of the Maxwell equations, and have finite energy, momentum and angular momentum. There are five chapters: on Fundamentals, Solutions of the Wave Equation, Electromagnetic Pulses, Angular Momentum, and Lorentz Transformations. Nine Appendices cover mathematical or associated aspects, such as chiral measures of electromagnetic fields. The subject matter is restricted to free-space classical electrodynamics, but contact is made with quantum theory in proofs that causal pulses are equivalent to superpositions of photons.
Hyperbolic geometry is an essential part of theoretical
astrophysics and cosmology. Besides specialists of these domains,
many specialists of new domains start to show a growing
interest This book gives the reader a deep and efficient introduction to an algorithmic approach to hyperbolic geometry. It focuses the attention on the possibilities to obtain in this frame the power of computing everything a computer can compute, that is to say: universality. The minimal ways to get universality are investigated in a large family of tilings of the hyperbolic plane. In several cases the best results are obtained.In all cases, the results are close to the theoretical best values. This gives rise to fantastic illustrations: the results are jewels in all meanings of the word. ------------------------ Maurice MARGENSTERN is professor emeritus at the University of
Lorraine, he is a member of LITA, the research unit of computer
science in the campus of Metz of this university. Professor
Margenstern is amongst top world experts in theory of computation,
mathematical machines and geometry. He is a pioneer
Optimization is an integral part to science and engineering. Most real-world applications involve complex optimization processes, which are di?cult to solve without advanced computational tools. With the increasing challenges of ful?lling optimization goals of current applications there is a strong drive to advancethe developmentofe?cientoptimizers. The challengesintroduced by emerging problems include: * objective functions which are prohibitively expensive to evaluate, so ty- callysoonlyasmallnumber ofobjectivefunctionevaluationscanbemade during the entire search, * objective functions which are highly multimodal or discontinuous, and * non-stationary problems which may change in time (dynamic). Classical optimizers may perform poorly or even may fail to produce any improvement over the starting vector in the face of such challenges. This has motivated researchers to explore the use computational intelligence (CI) to augment classical methods in tackling such challenging problems. Such methods include population-based search methods such as: a) evolutionary algorithms and particle swarm optimization and b) non-linear mapping and knowledgeembedding approachessuchasarti?cialneuralnetworksandfuzzy logic, to name a few. Such approaches have been shown to perform well in challenging settings. Speci?cally, CI are powerful tools which o?er several potential bene?ts such as: a) robustness (impose little or no requirements on the objective function) b) versatility (handle highly non-linear mappings) c) self-adaptionto improveperformance and d) operationin parallel(making it easy to decompose complex tasks). However, the successful application of CI methods to real-world problems is not straightforward and requires both expert knowledge and trial-and-error experiments.
This treasure of popular science by the Russian biophysicist Mikhail V. Volkenstein is at last, more than twenty years after its appearance in Russian, available in English translation. As its title Entropy and Information suggests, the book deals with the thermodynamical concept of entropy and its interpretation in terms of information theory. The author shows how entropy is not to be considered a mere shadow of the central physical concept of energy, but more appropriately as a leading player in all of the major natural processes: physical, chemical, biological, evolutionary, and even cultural. The theory of entropy is thoroughly developed from its beginnings in the foundational work of Sadi Carnot and Clausius in the context of heat engines, including expositions of much of the necessary physics and mathematics, and illustrations from everyday life of the importance of entropy. The author then turns to Boltzmann's epoch-making formula relating the entropy of a system directly to the degree of disorder of the system, and to statistical physics as created by Boltzmann and Maxwell---and here again the necessary elements of probability and statistics are expounded. It is shown, in particular, that the temperature of an object is essentially just a measure of the mean square speed of its molecules. Fluctuations" in a system are introduced and used to explain why the sky is blue, and how, perhaps, the universe came to be so ordered. Whether statistical physics reduces ultimately to pure mechanics, as Laplace's demon" would have it, is also discussed. The final three chapters concentrate on open systems, that is, systems which exchange energy or matter with their surroundings---first linear systems close to equilibrium, and then non-linear systems far from equilibrium. Here entropy, as it figures in the theory of such systems developed by Prigogine and others, affords explanations of the mechanism of division of cells, the process of aging in organisms, and periodic chemical reactions, among other phenomena. Finally, information theory is developed---again from first principles---and the entropy of a system characterized as absence of information about the system. In the final chapter, perhaps the piece de resistance of the work, the author examines the thermodynamics of living organisms in the context of biological evolution. Here the value of biological information" is discussed, linked to the concepts of complexity and irreplaceability. The chapter culminates in a fascinating discussion of the significance of these concepts, all centered on entropy, for human culture, with many references to particular writers and artists. The book is recommended reading for all interested in physics, information theory, chemistry, biology, as well as literature and art."
This book presents extensive information on the mechanisms of epitaxial growth in III-nitride compounds, drawing on a state-of-the-art computational approach that combines ab initio calculations, empirical interatomic potentials, and Monte Carlo simulations to do so. It discusses important theoretical aspects of surface structures and elemental growth processes during the epitaxial growth of III-nitride compounds. In addition, it discusses advanced fundamental structural and electronic properties, surface structures, fundamental growth processes and novel behavior of thin films in III-nitride semiconductors. As such, it will appeal to all researchers, engineers and graduate students seeking detailed information on crystal growth and its application to III-nitride compounds.
This book discusses recent developments and contemporary research in mathematics, statistics and their applications in computing. All contributing authors are eminent academicians, scientists, researchers and scholars in their respective fields, hailing from around the world. This is the second conference on mathematics and computing organized at Haldia Institute of Technology, India. The conference has emerged as a powerful forum, offering researchers a venue to discuss, interact and collaborate, and stimulating the advancement of mathematics and its applications in computer science. The book will allow aspiring researchers to update their knowledge of cryptography, algebra, frame theory, optimizations, stochastic processes, compressive sensing, functional analysis, complex variables, etc. Educating future consumers, users, producers, developers and researchers in mathematics and computing is a challenging task and essential to the development of modern society. Hence, mathematics and its applications in computing are of vital importance to a broad range of communities, including mathematicians and computing professionals across different educational levels and disciplines. In current research, modeling and simulation, making decisions under uncertainty and pattern recognition have become very common. Professionals across different educational levels and disciplines need exposure to advances in mathematics and computing. In this context, this book presents research papers on applicable areas of current interest. It also includes papers in which experts summarize research findings, such as signal processing and analysis and low-rank-matrix approximation for solving large systems, which will emerge as powerful tools for further research. These new advances and cutting-edge research in the fields of mathematics and their applications to computing are of paramount importance for young researchers.
This book discusses the design of new space missions and their use for a better understanding of the dynamical behaviour of solar system bodies, which is an active field of astrodynamics. Space missions gather data and observations that enable new breakthroughs in our understanding of the origin, evolution and future of our solar system and Earth's place within it. Covering topics such as satellite and space mission dynamics, celestial mechanics, spacecraft navigation, space exploration applications, artificial satellites, space debris, minor bodies, and tidal evolution, the book presents a collection of contributions given by internationally respected scientists at the summer school "Satellite Dynamics and Space Missions: Theory and Applications of Celestial Mechanics", held in 2017 at San Martino al Cimino, Viterbo (Italy). This school aimed to teach the latest theories, tools and methods developed for satellite dynamics and space, and as such the book is a valuable resource for graduate students and researchers in the field of celestial mechanics and aerospace engineering.
This book provides a fresh approach to reliability theory, an area that has gained increasing relevance in fields from statistics and engineering to demography and insurance. Its innovative use of quantile functions gives an analysis of lifetime data that is generally simpler, more robust, and more accurate than the traditional methods, and opens the door for further research in a wide variety of fields involving statistical analysis. In addition, the book can be used to good effect in the classroom as a text for advanced undergraduate and graduate courses in Reliability and Statistics.
Fuzzy Logic in Management demonstrates that difficult problems and changes in the management environment can be more easily handled by bringing fuzzy logic into the practice of management. This explicit theme is developed through the book as follows: Chapter 1, "Management and Intelligent Support Technologies," is a short survey of management leadership and what can be gained from support technologies. Chapter 2, "Fuzzy Sets and Fuzzy Logic," provides a short introduction to fuzzy sets, fuzzy relations, the extension principle, fuzzy implications and linguistic variables. Chapter 3, "Group Decision Support Systems," deals with group decision making, and discusses methods for supporting the consensus reaching processes. Chapter 4, "Fuzzy Real Options for Strategic Planning," summarizes research where the fuzzy real options theory was implemented as a series of models. These models were thoroughly tested on a number of real life investments, and validated in 2001. Chapter 5, "Soft Computing Methods for Reducing the Bullwhip Effect," summarizes research work focused on the demand fluctuations in supply chains. The program enhanced existing theoretical frameworks with fuzzy logic modeling. Chapter 6, "Knowledge Management," outlines the collection, storing, transfer and management of knowledge using fuzzy logic. The principles are worked out in detail with software agents. Chapter 7, "Mobile Technology Application," introduces various applications including empirical facts and how mobile technology can be supported with software agents. Implicitly the book develops themes that successful companies should use to (1) master effectiveness and quality in both the details and the whole, (2) build on and work with flexibility, and (3) support continuous learning in both the organizational and the individual level.
This thesis investigates ultracold molecules as a resource for novel quantum many-body physics, in particular by utilizing their rich internal structure and strong, long-range dipole-dipole interactions. In addition, numerical methods based on matrix product states are analyzed in detail, and general algorithms for investigating the static and dynamic properties of essentially arbitrary one-dimensional quantum many-body systems are put forth. Finally, this thesis covers open-source implementations of matrix product state algorithms, as well as educational material designed to aid in the use of understanding such methods.
Miller and Childers have focused on creating a clear presentation
of foundational concepts with specific applications to signal
processing and communications, clearly the two areas of most
interest to students and instructors in this course. It is aimed at
graduate students as well as practicing engineers, and includes
unique chapters on narrowband random processes and simulation
techniques.
This book presents the state of the art in multilevel analysis, with an emphasis on more advanced topics. These topics are discussed conceptually, analyzed mathematically, and illustrated by empirical examples. Multilevel analysis is the statistical analysis of hierarchically and non-hierarchically nested data. The simplest example is clustered data, such as a sample of students clustered within schools. Multilevel data are especially prevalent in the social and behavioral sciences and in the biomedical sciences. The chapter authors are all leading experts in the field. Given the omnipresence of multilevel data in the social, behavioral, and biomedical sciences, this book is essential for empirical researchers in these fields.
This volume contains 27 contributions to the Forth Russian-German Advanced Research Workshop on Computational Science and High Performance Computing presented in October 2009 in Freiburg, Germany. The workshop was organized jointly by the High Performance Computing Center Stuttgart (HLRS), the Institute of Computational Technologies of the Siberian Branch of the Russian Academy of Sciences (ICT SB RAS) and the Section of Applied Mathematics of the University of Freiburg (IAM Freiburg) The contributions range from computer science, mathematics and high performance computing to applications in mechanical and aerospace engineering. They show a wealth of theoretical work and simulation experience with a potential of bringing together theoretical mathematical modelling and usage of high performance computing systems presenting the state of the art of computational technologies.
This book introduces new concepts and mechanisms regarding the usage of both social media interactions and artifacts for peer education in digital educational games. Digital games in general, and digital educational games in particular, represent an area with a high potential for interdisciplinary innovation, not only from an information technology standpoint, but also from social science, psychological and didactic perspectives. This book presents an interdisciplinary approach to educational games, which is centered on information technology and aims at: (1) improving digital management by focusing on the exchange of learning outcomes and solution assessment in a peer-to-peer network of learners; (2) achieving digital implementation by using forms of interaction to change the course of educational games; and (3) providing digital support by fostering group-formation processes in educational situations to increase both the effects of educational games and knowledge exchange at the individual level. In addition to a systematic analysis of the relationship between software architecture, educational games and social media applications, the book also presents the implemented IT systems' architectures and algorithmic solutions as well as the resulting applicable evaluation findings from the field of interactive multimedia learning.
Over the last years, stochastic analysis has had an enormous progress with the impetus originating from different branches of mathematics: PDE's and the Malliavin calculus, quantum physics, path space analysis on curved manifolds via probabilistic methods, and more. This volume contains selected contributions which were presented at the 8th Silivri Workshop on Stochastic Analysis and Related Topics, held in September 2000 in Gazimagusa, North Cyprus. The topics include stochastic control theory, generalized functions in a nonlinear setting, tangent spaces of manifold-valued paths with quasi-invariant measures, and applications in game theory, theoretical biology and theoretical physics. Contributors: A.E. Bashirov, A. Bensoussan and J. Frehse, U. Capar and H. Aktuglul, A.B. Cruzeiro and Kai-Nan Xiang, E. Hausenblas, Y. Ishikawa, N. Mahmudov, P. Malliavin and U. Taneri, N. Privault, A.S. Ustunel"
This textbook focuses on the cohort change ratio (CCR) method. It presents powerful, yet relatively simple ways to generate accurate demographic estimates and forecasts that are cost efficient and require fewer resources than other techniques. The concepts, analytical frameworks, and methodological tools presented do not require extensive knowledge of demographics, mathematics, or statistics. The demographic focus is on the characteristics of populations, especially age and sex composition, but these methods are applicable estimating and forecasting other characteristics and total population. The book contains more traditional applications such as the Hamilton-Perry method, but also includes new applications of the CCR method such as stable population theory. Real world empirical examples are provided for every application; along with excel files containing data and program code, which are accessible online. Topics covered include basic demographic measures, sources of demographic information, forecasting and estimating (both current and historical) populations, modifications to current methods, forecasting school enrollment and other characteristics, estimating life expectancy, stable population theory, decomposition of the CCR into its migration and mortality components, and the utility of the CCR. This textbook is designed to provide material for an advanced undergraduate or graduate course on demographic methods. It can also be used as a supplement for other courses including applied demography, business and economic forecasting and market research.
When no samples are available to estimate a probability distribution, we have to invite some domain experts to evaluate the belief degree that each event will happen. Perhaps some people think that the belief degree should be modeled by subjective probability or fuzzy set theory. However, it is usually inappropriate because both of them may lead to counterintuitive results in this case. In order to rationally deal with belief degrees, uncertainty theory was founded in 2007 and subsequently studied by many researchers. Nowadays, uncertainty theory has become a branch of axiomatic mathematics for modeling belief degrees. This is an introductory textbook on uncertainty theory, uncertain programming, uncertain statistics, uncertain risk analysis, uncertain reliability analysis, uncertain set, uncertain logic, uncertain inference, uncertain process, uncertain calculus, and uncertain differential equation. This textbook also shows applications of uncertainty theory to scheduling, logistics, networks, data mining, control, and finance.
This book brings together historical notes, reviews of research developments, fresh ideas on how to make VC (Vapnik-Chervonenkis) guarantees tighter, and new technical contributions in the areas of machine learning, statistical inference, classification, algorithmic statistics, and pattern recognition. The contributors are leading scientists in domains such as statistics, mathematics, and theoretical computer science, and the book will be of interest to researchers and graduate students in these domains.
This book provides an introduction to the mathematical aspects of Euler's elastic theory and its application. The approach is rigorous, as well as visually depicted, and can be easily digested. The first few chapters introduce the needed mathematical concepts from geometry and variational calculus. The formal definitions and proofs are always illustrated through complete derivations and concrete examples. In this way, the reader becomes acquainted with Cassinian ovals, Sturmian spirals, co-Lemniscates, the nodary and the undulary, Delaunay surfaces, and their generalizations. The remaining chapters discuss the modeling of membranes, mylar balloons, rotating liquid drops, Hele-Shaw cells, nerve fibers, Cole's experiments, and membrane fusion. The book is geared towards applied mathematicians, physicists and engineers interested in Elastica Theory and its applications.
This text focuses on the algebraic formulation of quantum field theory, from the introductory aspects to the applications to concrete problems of physical interest. The book is divided in thematic chapters covering both introductory and more advanced topics. These include the algebraic, perturbative approach to interacting quantum field theories, algebraic quantum field theory on curved spacetimes (from its structural aspects to the applications in cosmology and to the role of quantum spacetimes), algebraic conformal field theory, the Kitaev's quantum double model from the point of view of local quantum physics and constructive aspects in relation to integrable models and deformation techniques. The book is addressed to master and graduate students both in mathematics and in physics, who are interested in learning the structural aspects and the applications of algebraic quantum field theory.
This book discusses major milestones in Rohit Jivanlal Parikh's scholarly work. Highlighting the transition in Parikh's interest from formal languages to natural languages, and how he approached Wittgenstein's philosophy of language, it traces the academic trajectory of a brilliant scholar whose work opened up various new avenues in research. This volume is part of Springer's book series Outstanding Contributions to Logic, and honours Rohit Parikh and his works in many ways. Parikh is a leader in the realm of ideas, offering concepts and definitions that enrich the field and lead to new research directions. Parikh has contributed to a variety of areas in logic, computer science and game theory. In mathematical logic his contributions have been in recursive function theory, proof theory and non-standard analysis; in computer science, in the areas of modal, temporal and dynamic logics of programs and semantics of programs, as well as logics of knowledge; in artificial intelligence in the area of belief revision; and in game theory in the formal analysis of social procedures, with a strong undercurrent of philosophy running through all his work.This is not a collection of articles limited to one theme, or even directly connected to specific works by Parikh, but instead all papers are inspired and influenced by Parikh in some way, adding structures to and enriching "Parikh-land". The book presents a brochure-like overview of Parikh-land before providing an "introductory video" on the sights and sounds that you experience when reading the book.
Concentration inequalities, which express the fact that certain complicated random variables are almost constant, have proven of utmost importance in many areas of probability and statistics. This volume contains refined versions of these inequalities, and their relationship to many applications particularly in stochastic analysis. The broad range and the high quality of the contributions make this book highly attractive for graduates, postgraduates and researchers in the above areas.
By studying applications in radar, telecommunications and digital image restoration, this monograph discusses signal processing techniques based on bispectral methods. Improved robustness against different forms of noise as well as preservation of phase information render this method a valuable alternative to common power-spectrum analysis used in radar object recognition, digital wireless communications, and jitter removal in images.
Shedding light on new opportunities in predictor feedback, this book significantly broadens the set of techniques available to a mathematician or engineer working on delay systems. It is a collection of tools and techniques that make predictor feedback ideas applicable to nonlinear systems, systems modeled by PDEs, systems with highly uncertain or completely unknown input/output delays, and systems whose actuator or sensor dynamics are modeled by more general hyperbolic or parabolic PDEs, rather than by pure delay. Replete with examples, Delay Compensation for Nonlinear, Adaptive, and PDE Systems is an excellent reference guide for graduate students, researchers, and professionals in mathematics, systems control, as well as chemical, mechanical, electrical, computer, aerospace, and civil/structural engineering. Parts of the book may be used in graduate courses on general distributed parameter systems, linear delay systems, PDEs, nonlinear control, state estimator and observers, adaptive control, robust control, or linear time-varying systems. |
You may like...
Adaptive Image Processing Algorithms for…
Ilia V. Safonov, Ilya V. Kurilin, …
Hardcover
R4,718
Discovery Miles 47 180
Machining Impossible Shapes - IFIP TC5…
Gustav J. Olling, Byoung K. Choi, …
Hardcover
R5,354
Discovery Miles 53 540
|