Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Electronics & communications engineering > Communications engineering / telecommunications
An all-encompassing guide to the business, engineering, and regulatory factors shaping the growth of the distance learning industry. This book examines potential providers, users, applications, and problem solutions, and includes actual case studies. An outstanding reference for educators, network service providers, public policy makers, and graduate level engineering students specializing in telecommunications.
With the rapid growth of bandwidth demand from network users and the advances in optical technologies, optical networks with multiterabits per-second capacity has received significant interest from both researchers and practitioners. Optical networks deployment raises a number of challenging problems that require innovative solutions, including net work architectures, scalable and fast network management, resource efficient routing and wavelength assignment algorithms, QoS support and scheduling algorithms, and switch and router architectures. In this book, we put together some important developments in this exiting area during last several years. Some of the articles are research papers and some are surveys. All articles were reviewed by two reviewers. The paper, "On Dynamic Wavelength Assignment in WDM Optical Networks," by Alanyali gives an overview of some issues in the analy sis and synthesis of dynamic wavelength assignment policies for optical WDM networks and illustrates a new method of analysis. The paper by Ellinas and Bala, "Wavelength Assignment Algorithms for WDM Ring Architectures," presents two optimal wavelength assignment algorithms that assign the minimum number of wavelengths between nodes on WDM rings to achieve full mesh connectivity. In the paper, "Optimal Placement of Wavelength Converters in WDM Networks for Parallel and Distributed Computing Systems," Jia et al."
Essential background reading for engineers and scientists working in such fields as communications, control, signal, and image processing, radar and sonar, radio astronomy, seismology, remote sensing, and instrumentation. The book can be used as a textbook for a single course, as well as a combination of an introductory and an advanced course, or even for two separate courses, one in signal detection, the other in estimation.
The path forward to rein in online surveillance, AI, and tech monopolies. Technology is a gift and a curse. The five Big Tech companies―Meta, Apple, Amazon, Microsoft, and Google―have built innovative products that improve many aspects of our lives. But their intrusiveness and our dependence on them have created pressing threats to our civil rights, economy, and democracy. Coming from an extensive background building Silicon Valley-based tech startups, Tom Kemp eloquently and precisely weaves together the threats posed by Big Tech:
This richly detailed book exposes the consequences of Big Tech's digital surveillance, exploitative use of AI, and monopolistic and anticompetitive practices. It offers actionable solutions to these problems and a clear path forward for individuals and policymakers to advocate for change. By containing the excesses of Big Tech, we will ensure our civil rights are respected and preserved, our economy is competitive, and our democracy is protected.
Includes full color and black and white illustrations, This handbook is designed to aid electronic warfare and radar systems engineers in making general estimations regarding capabilities of systems. This handbook is sponsored by the NAVAIR Director of Electronic Warfare / Combat Systems. Chapters include: Fundamentals; Antennas; Radar Equations; Radar and Receiver Characteristics and Test; Microwave / RF Components; Electro-optics an IR; Aircraft Dynamics Considerations; Date Transfer Busses; Glossary; Abbreviations and Acronyms.
The need for automatic speech recognition systems to be robust with respect to changes in their acoustical environment has become more widely appreciated in recent years, as more systems are finding their way into practical applications. Although the issue of environmental robustness has received only a small fraction of the attention devoted to speaker independence, even speech recognition systems that are designed to be speaker independent frequently perform very poorly when they are tested using a different type of microphone or acoustical environment from the one with which they were trained. The use of microphones other than a "close talking" headset also tends to severely degrade speech recognition -performance. Even in relatively quiet office environments, speech is degraded by additive noise from fans, slamming doors, and other conversations, as well as by the effects of unknown linear filtering arising reverberation from surface reflections in a room, or spectral shaping by microphones or the vocal tracts of individual speakers. Speech-recognition systems designed for long-distance telephone lines, or applications deployed in more adverse acoustical environments such as motor vehicles, factory floors, oroutdoors demand far greaterdegrees ofenvironmental robustness. There are several different ways of building acoustical robustness into speech recognition systems. Arrays of microphones can be used to develop a directionally-sensitive system that resists intelference from competing talkers and other noise sources that are spatially separated from the source of the desired speech signal."
This book applies the approach of technology assessment to the telephone. The author's analysis forecasts the effect of the telephone on society and compares it with the reality. This book not only examines the social consequences of the telephone, but provides a model for future efficient assessments of new technologies. It documents a largely unknown piece of the history of American technology and anlayzes the requirements for success in technological forecasting.
It gives me immense pleasure to introduce this timely handbook to the research/- velopment communities in the ?eld of signal processing systems (SPS). This is the ?rst of its kind and represents state-of-the-arts coverage of research in this ?eld. The driving force behind information technologies (IT) hinges critically upon the major advances in both component integration and system integration. The major breakthrough for the former is undoubtedly the invention of IC in the 50's by Jack S. Kilby, the Nobel Prize Laureate in Physics 2000. In an integrated circuit, all components were made of the same semiconductor material. Beginning with the pocket calculator in 1964, there have been many increasingly complex applications followed. In fact, processing gates and memory storage on a chip have since then grown at an exponential rate, following Moore's Law. (Moore himself admitted that Moore's Law had turned out to be more accurate, longer lasting and deeper in impact than he ever imagined. ) With greater device integration, various signal processing systems have been realized for many killer IT applications. Further breakthroughs in computer sciences and Internet technologies have also catalyzed large-scale system integration. All these have led to today's IT revolution which has profound impacts on our lifestyle and overall prospect of humanity. (It is hard to imagine life today without mobiles or Internets ) The success of SPS requires a well-concerted integrated approach from mul- ple disciplines, such as device, design, and application.
The last ten years have seen a great flowering of the theory of digital data modulation. This book is a treatise on digital modulation theory, with an emphasis on these more recent innovations. It has its origins in a collabor ation among the authors that began in 1977. At that time it seemed odd to us that the subjects of error-correcting codes and data modulation were so separated; it seemed also that not enough understanding underlay the mostly ad hoc approaches to data transmission. A great many others were intrigued, too, and the result was a large body of new work that makes up most of this book. Now the older disciplines of detection theory and coding theory have been generalized and applied to the point where it is hard to tell where these end and the theories of signal design and modulation begin. Despite our emphasis on the events of the last ten years, we have included all the traditional topics of digital phase modulation. Signal space concepts are developed, as are simple phase-shift-keyed and pulse-shaped modulations; receiver structures are discussed, from the simple linear receiver to the Viterbi algorithm; the effects of channel filtering and of hardlimiting are described. The volume thus serves well as a pedagogical book for research engineers in industry and second-year graduate students in communications engineering. The production of a manageable book required that many topics be left out."
Modern airborne and spaceborne imaging radars, known as synthetic aperture radars (SARs), are capable of producing high-quality pictures of the earth's surface while avoiding some of the shortcomings of certain other forms of remote imaging systems. Primarily, radar overcomes the nighttime limitations of optical cameras, and the cloud- cover limitations of both optical and infrared imagers. In addition, because imaging radars use a form of coherent illumination, they can be used in certain special modes such as interferometry, to produce some unique derivative image products that incoherent systems cannot. One such product is a highly accurate digital terrain elevation map (DTEM). The most recent (ca. 1980) version of imaging radar, known as spotlight-mode SAR, can produce imagery with spatial resolution that begins to approach that of remote optical imagers. For all of these reasons, synthetic aperture radar imaging is rapidly becoming a key technology in the world of modern remote sensing. Much of the basic workings' of synthetic aperture radars is rooted in the concepts of signal processing. Starting with that premise, this book explores in depth the fundamental principles upon which the spotlight mode of SAR imaging is constructed, using almost exclusively the language, concepts, and major building blocks of signal processing. Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach is intended for a variety of audiences. Engineers and scientists working in the field of remote sensing but who do not have experience with SAR imaging will find an easy entrance into what can seem at times a very complicated subject. Experienced radar engineers will find that the book describes several modern areas of SAR processing that they might not have explored previously, e.g. interferometric SAR for change detection and terrain elevation mapping, or modern non-parametric approaches to SAR autofocus. Senior undergraduates (primarily in electrical engineering) who have had courses in digital signal and image processing, but who have had no exposure to SAR could find the book useful in a one-semester course as a reference.
Reviewing the previous edition, "IEEE Microwave Magazine" boasted, "anyone designing power amplifiers will find this book thought provoking and useful." Professionals in the field agreed as the book went on to be one of our top-selling RF design titles. This extensively revised edition of "RF Power Amplifiers for Wireless Communications" offers practitioners a comprehensive, practical, and up-to-date understanding of how to tackle a PA (power amplifier) design with confidence and quickly determine the cause of malfunctioning hardware. Among the numerous updates, the Second Edition includes five new chapters on some of today's most important topics, such as class AB PAs at GHz frequencies; switching PA modes at GHz frequencies; signals, modulation systems, and PA nonlinearities; power amplifier bias circuit design; and load-pull techniques. Supported with nearly 200 illustrations, the book contains the most complete survey of RF PA efficiency enhancement and linearization techniques in a single volume.
The first radio links, wireless telegraphy, were established at the beginnings of the twentieth century by Marconi, who drew upon the theory developed by Maxwell and upon the experimental researches conducted by Hertz. In France, such renown scientists, mathematicians, physicists and experimenters as Poincare, Blondel and the General Ferrie played a crucial role in the development of radiocommunications, more particularly through theoretical and experimental researches which contributed to a better understanding of the different propagation media. Following the Second World War, the researchers and engineers of the newly created Centre National d'Etudes des Telecommunications (CNET), among whom may be mentioned Jean Voge, Francois du Castel, Andre Spizzichino or Lucien Boithias, made decisive contributions to the understanding of the propagation of radio waves, in particular in the context of their application to telecommunications. Although the CNET has now become France Telecom Recherche & Developpement, the present book is in keeping with this approach, which has been going on for more than half a century. By providing the reader with some of the most recent researches in this field, Herve Sizun offers here an essential complement to the work by Lucien Boithias Radiowave Propagation, first published in 1983 in the Collection Technique et Scientifique des Telecommunications, and published in an English version in 1987 by McGraw- Hill."
Faithful communication is a necessary precondition for large-scale quantum information processing and networking, irrespective of the physical platform. Thus, the problems of quantum-state transfer and quantum-network engineering have attracted enormous interest over the last years, and constitute one of the most active areas of research in quantum information processing. The present volume introduces the reader to fundamental concepts and various aspects of this exciting research area, including links to other related areas and problems. The implementation of state-transfer schemes and the engineering of quantum networks are discussed in the framework of various quantum optical and condensed matter systems, emphasizing the interdisciplinary character of the research area. Each chapter is a review of theoretical or experimental achievements on a particular topic, written by leading scientists in the field. The volume aims at both newcomers as well as experienced researchers.
Since the first edition of this book was published seven years ago, the field of modeling and simulation of communication systems has grown and matured in many ways, and the use of simulation as a day-to-day tool is now even more common practice. With the current interest in digital mobile communications, a primary area of application of modeling and simulation is now in wireless systems of a different flavor from the traditional' ones. This second edition represents a substantial revision of the first, partly to accommodate the new applications that have arisen. New chapters include material on modeling and simulation of nonlinear systems, with a complementary section on related measurement techniques, channel modeling and three new case studies; a consolidated set of problems is provided at the end of the book.
Digital Baseband Transmission and Recording provides an integral, in-depth and up-to-date overview of the signal processing techniques that are at the heart of digital baseband transmission and recording systems. The coverage ranges from fundamentals to applications in such areas as digital subscriber loops and magnetic and optical storage. Much of the material presented here has never before appeared in book form. The main features of Digital Baseband Transmission and Recording include: a survey of digital subscriber lines and digital magnetic and optical storage; a review of fundamental transmission and reception limits; an encyclopedic introduction to baseband modulation codes; development of a rich palette of equalization techniques; a coherent treatment of Viterbi detection and many near-optimum detection schemes; an overview of adaptive reception techniques that encompasses adaptive gain and slope control, adaptive detection, and novel forms of zero-forcing adaptation; an in-depth review of timing recovery and PLLs, with an extensive catalog of timing-recovery schemes. . Featuring around 450 figures, 200 examples, 350 problems and exercises, and 750 references, Digital Baseband Transmission and Recording is an essential reference source to engineers and researchers active in telecommunications and digital recording. It will also be useful for advanced courses in digital communications.
The book describes a method for modeling systems architecture, particularly of telecom networks and systems, although a large part can be used in a wider context. The method is called Sysnet Modeling and is based on a new modeling language, AML (Abstract systems Modeling Language), which is also described in the book. By applying Sysnet Modeling and AML, a formal model of the system is created. That model can be used for systems analysis as well as for communicating system knowledge to a broader audience of engineers in development projects. Inherent in sysnet modeling is the potential for considerable reduction in time spent on system implementation through the possibilities for code- and test-case generation.
Neurofuzzy and fuzzyneural techniques as tools of studying and analyzing complex problems are relatively new even though neural networks and fuzzy logic systems have been applied as computational intelligence structural e- ments for the last 40 years. Computational intelligence as an independent sci- tific field has grown over the years because of the development of these str- tural elements. Neural networks have been revived since 1982 after the seminal work of J. J. Hopfield and fuzzy sets have found a variety of applications since the pub- cation of the work of Lotfi Zadeh back in 1965. Artificial neural networks (ANN) have a large number of highly interconnected processing elements that usually operate in parallel and are configured in regular architectures. The c- lective behavior of an ANN, like a human brain, demonstrates the ability to learn, recall, and generalize from training patterns or data. The performance of neural networks depends on the computational function of the neurons in the network, the structure and topology of the network, and the learning rule or the update rule of the connecting weights. This concept of trainable neural n- works further strengthens the idea of utilizing the learning ability of neural networks to learn the fuzzy control rules, the membership functions and other parameters of a fuzzy logic control or decision systems, as we will explain later on, and this becomes the advantage of using a neural based fuzzy logic system in our analysis. On the other hand, fuzzy systems are structured numerical est
Like the 120 volt standard for electricity, the appearance of standards in network management heralds new opportunities for creativity and achievement. As one example, within the framework of these evolving standards, consider a system of local area networks connecting computing equipment from different vendors. A bridge 1qc. k:8 up because of a transient caused by a repeater failure. The result is a massive disconnecHon of virtual circuits. What is the role of the manager and the network management system in solving the problem? How does the vendor implement the solution? How does the user use it? What measurements should be made? How should they be displayed? How much of the diagnosis and correction should be automated? How does the solution change with different hardware and software? In the IEEE Communications Magazine, I recently reported a timely illustration in the area of problems in fault management. At the workshop hotel, "I was waiting for a room assignment at the reception desk, when my attendant left the counter for a moment. Upon returning, he took one look at his screen and whined an accusatory question at everyone in sight, 'Who logged out my terminal?' Who indeed! It wasn't any of us. It was the system.
Wireless personal communications, or wireless as it is now being called, has arrived. The hype is starting to fade, and the hard work of deploying new systems and services for personal communications is underway. In the United States, the FCC propelled the wireless era from infancy to mainstream with a $7.7 billion auction of 60 MHz of radio spectrum in the 180011900 MHz band. With the largest single sale of public property in the history of mankind mostly complete, the resources of the entire world are being called upon to develop inexpensive, rapidly deployable wireless systems and sub scriber units for an industry that is adding subscribers at greater than 50% annual rate. This growth is commonplace for wireless service companies throughout the world, and in the U.S., where as many as 7 licensed wireless service providers may be competing for cellularfPCS customers within the next couple of years, differentiators in cost, qual ity, service, and coverage will become critical to customer acceptance and use. Many of these issues are discussed in the papers included in this book."
This book demonstrates how to model the entire target acquisition process using either visible or infrared imaging systems. Beginning with an overview on electro-optical system design, the text introduces the complexity of various design considerations. A discussion of the differing types of visible and infrared sensors outlines basic wavelength issues and provides definitions of baseline hardware solutions.
This monograph is intended for the designers and would-be designers of secure and efficient wireless communication systems under intentional interference. Along with the widespread of wireless devices, especially reconfigurable software defined radios, jamming has become a serious threat to civilian communications. In this book, going beyond traditional communication system design that mainly focuses on accurate information transmission under benign environments, we aim to enhance the physical layer security of communication systems by integrating modern cryptographic techniques into transceiver design, so as to achieve secure high-speed transmission under hostile interference with high reliability and efficiency. We revisit existing jamming patterns, and introduce new jamming patterns. We analyze the weaknesses of existing anti-jamming techniques. We present innovative and feasible anti-jamming techniques, which can strengthen the inherent security of the 3G, 4G and the upcoming 5G systems with minimal and inexpensive changes to the existing CDMA, frequency hopping and OFDM schemes. We also provide benchmarks for system performance evaluation under various jamming scenarios through capacity analysis. This book includes design principles, in-depth theoretical analysis and practical design examples, and will be of interest to academic researchers as well as professionals in industry.
In a single volume, The Mobile Communications Handbook covers the entire field, from principles of analog and digital communications to cordless telephones, wireless local area networks (LANs), and international technology standards. The tremendous scope of this second edition ensures that it will be the primary reference for every aspect of mobile communications. Details and references follow preliminary discussions, ensuring that the reader obtains the most accurate information available on the particular topic.
China Satellite Navigation Conference (CSNC) 2015 Proceedings presents selected research papers from CSNC2015, held during 13th-15th May in Xian, China. The theme of CSNC2015 is Opening-up, Connectivity and Win-win. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 10 topics to match the corresponding sessions in CSNC2015, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications. SUN Jiadong is the Chief Designer of the Compass/ BDS, and the academician of Chinese Academy of Sciences (CAS); LIU Jingnan is a professor at Wuhan University. FAN Shiwei is a researcher at China Satellite Navigation Office; LU Xiaochun is an academician of Chinese Academy of Sciences (CAS).
Roadside Networks for Vehicular Communications: Architectures, Applications, and Test Fields attempts to close the gap between science and technology in the field of roadside backbones for VCNs. This collection will be useful not only for researchers and engineers at universities, but for students in the fields of wireless communication networks, especially vehicular communication networks, and backbone networks as well. |
You may like...
Handbook of Research on Evolving Designs…
Kandarpa Kumar Sarma, Navajit Saikia, …
Hardcover
R9,802
Discovery Miles 98 020
Community Engagement in the Online Space
Michelle Dennis, James H Albert
Hardcover
R5,631
Discovery Miles 56 310
The COVID-19 Pandemic and the…
Floribert Patrick Calvain Endong
Hardcover
R6,143
Discovery Miles 61 430
|