![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Communications engineering / telecommunications
The general trend of modern network devices towards greater intelligence and programmability is accelerating the development of systems that are increasingly autonomous and to a certain degree self-managing. Examples range from router scripting environments to fully programmable server blades. This has opened up a new field of computer science research, reflected in this new volume. This selection of contributions to the first ever international workshop on network-embedded management applications (NEMA) features six papers selected from submissions to the workshop, held in October 2010 at Niagara Falls, Canada. They represent a wide cross-section of the current work in this vital field of inquiry. Covering a diversity of perspectives, the volume's dual structure first of all examines the 'enablers' for NEMAs-the platforms, frameworks, and development environments which facilitate the evolution of network-embedded management and applications. The second section of the book covers network-embedded applications that might both empower and benefit from such enabling platforms. These papers cover topics ranging from deciding where to best place management control functions inside a network to a discussion of how multi-core hardware processors can be leveraged for traffic filtering applications. The section concludes with an analysis of a delay-tolerant network application in the context of the 'One Laptop per Child' program. There is a growing recognition that it is vital to make network operation and administration as easy as possible to contain operational expenses and cope with ever shorter control cycles. This volume provides researchers in the field with the very latest in current thinking.
This book consists of the identification, characterization, and modeling of electromagnetic interferences in substations for the deployment of wireless sensor networks. The authors present in chapter 3 the measurement setup to record sequences of impulsive noise samples in the ISM band of interest. The setup can measure substation impulsive noise, in wide band, with enough samples per time window and enough precision to allow a statistical study of the noise. During the measurement campaign, the authors recorded around 120 noise sequences in different substations and for four ranges of equipment voltage, which are 25 kV, 230 kV, 315 kV and 735 kV. A characterization process is proposed, by which physical characteristics of partial discharge can be measured in terms of first- and second-order statistics. From the measurement campaign, the authors infer the characteristics of substation impulsive noise as a function of the substation equipment voltage, and can provide representative parameters for the four voltage ranges and for several existing impulsive noise models. The authors investigate in chapters 4 and 5 the modeling of electromagnetic interferences caused by partial discharge sources. First, the authors propose a complete and coherent approach model that links physical characteristics of high-voltage installations to the induced radio-interference spectra of partial discharge sources. The goodness-of-fit of the proposed physical model has been measured based on some interesting statistical metrics. This allows one to assess the effectiveness of the authors' approach in terms of first- and second-order statistics. Chapter 6 proposes a model based on statistical approach. Indeed, substation impulsive noise is composed of correlated impulses, which would require models with memory in order to replicate a similar correlation. Among different models, we have configured a Partitioned Markov Chain (PMC) with 19 states (one state for the background noise and 18 states for the impulse); this Markov-Gaussian model is able to generate impulsive noise with correlated impulse samples. The correlation is observable on the impulse duration and the power spectrum of the impulses. Our PMC model provides characteristics that are more similar to the characteristics of substation impulsive noise in comparison with other models, in terms of time and frequency response, as well as Probability Density Functions (PDF). Although PMC represents reliably substation impulsive noise, the model remains complex in terms of parameter estimation due to a large number of Markov states, which can be an obstacle for future wireless system design. In order to simplify the model, the authors decrease the number of states to 7 by assigning one state to the background noise and 6 states to the impulse and we call this model PMC-6. PMC-6 can generate realistic impulses and can be easily implemented in a receiver in order to mitigate substation impulsive noise. Representative parameters are provided in order to replicate substation impulsive noise for different voltage ranges (25-735 kV). Chapter 7, a generalized radio-noise model for substations is proposed, in which there are many discharges sources that are randomly distributed over space and time according to the Poisson field of interferers approach. This allows for the identification of some interesting statistical properties of moments, cumulants and probability distributions. These can, in turn, be utilized in signal processing algorithms for rapid partial discharge's identification, localization, and impulsive noise mitigation techniques in wireless communications in substations. The primary audience for this book is the electrical and power engineering industry, electricity providers and companies who are interested in substation automation systems using wireless communication technologies for smart grid applications. Researchers, engineers and students studying and working in wireless communication will also want to buy this book as a reference.
Iterative Detection: Adaptivity, Complexity Reduction, and Applications is a primary resource for both researchers and teachers in the field of communication. Unlike other books in the area, it presents a general view of iterative detection that does not rely heavily on coding theory or graph theory. The features of the text include: Both theoretical background and numerous real-world applications. Over 70 detailed examples, 100 problems, 180 illustrations, tables of notation and acronyms, and an extensive bibliography and subject index. A whole chapter devoted to a case study on turbo decoder design. Receiver design guidelines, rules and suggestions. The most advanced view of iterative (turbo) detection based only on block diagrams and standard detection and estimation theory. Development of adaptive iterative detection theory. Application of adaptive iterative detection to phase and channel tracking in turbo coded systems and systems representative of digital mobile radio designs. An entire chapter dedicated to complexity reduction. Numerous recent research results. Discussion of open problems at the end of each chapter. Among the applications considered in this book are joint equalization and decoding, turbo codes, multiuser detection and decoding, broadband wireless channel equalization, and applications to two-dimensional storage and imaging systems. Audience: Iterative Detection: Adaptivity, Complexity Reduction, and Applications provides an accessible and detailed reference for researchers, practicing engineers, and students working in the field of detection and estimation. It will be of particular interest to those who would like to learn how iterative detection can be applied to equalization, interference mitigation, and general signal processing tasks. Researchers and practicing engineers interested in learning the turbo decoding algorithm should also have this book.
Low-Power CMOS Wireless Communications: A Wideband CDMA System Design focuses on the issues behind the development of a high-bandwidth, silicon complementary metal-oxide silicon (CMOS) low-power transceiver system for mobile RF wireless data communications. In the design of any RF communications system, three distinct factors must be considered: the propagation environment in question, the multiplexing and modulation of user data streams, and the complexity of hardware required to implement the desired link. None of these can be allowed to dominate. Coupling between system design and implementation is the key to simultaneously achieving high bandwidth and low power and is emphasized throughout the book. The material presented in Low-Power CMOS Wireless Communications: A Wideband CDMA System Design is the result of broadband wireless systems research done at the University of California, Berkeley. The wireless development was motivated by a much larger collaborative effort known as the Infopad Project, which was centered on developing a mobile information terminal for multimedia content - a wireless network computer'. The desire for mobility, combined with the need to support potentially hundreds of users simultaneously accessing full-motion digital video, demanded a wireless solution that was of far lower power and higher data rate than could be provided by existing systems. That solution is the topic of this book: a case study of not only wireless systems designs, but also the implementation of such a link, down to the analog and digital circuit level.
This book provides a comprehensive set of optimization and prediction techniques for an enterprise information system. Readers with a background in operations research, system engineering, statistics, or data analytics can use this book as a reference to derive insight from data and use this knowledge as guidance for production management. The authors identify the key challenges in enterprise information management and present results that have emerged from leading-edge research in this domain. Coverage includes topics ranging from task scheduling and resource allocation, to workflow optimization, process time and status prediction, order admission policies optimization, and enterprise service-level performance analysis and prediction. With its emphasis on the above topics, this book provides an in-depth look at enterprise information management solutions that are needed for greater automation and reconfigurability-based fault tolerance, as well as to obtain data-driven recommendations for effective decision-making.
Wireless Distributed Computing and Cognitive Sensing defines high-dimensional data processing in the context of wireless distributed computing and cognitive sensing. This book presents the challenges that are unique to this area such as synchronization caused by the high mobility of the nodes. The author will discuss the integration of software defined radio implementation and testbed development. The book will also bridge new research results and contextual reviews. Also the author provides an examination of large cognitive radio network; hardware testbed; distributed sensing; and distributed computing.
This book has brought 24 groups of experts and active researchers around the world together in image processing and analysis, video processing and analysis, and communications related processing, to present their newest research results, exchange latest experiences and insights, and explore future directions in these important and rapidly evolving areas. It aims at increasing the synergy between academic and industry professionals working in the related field. It focuses on the state-of-the-art research in various essential areas related to emerging technologies, standards and applications on analysis, processing, computing, and communication of multimedia information. The target audience of this book is researchers and engineers as well as graduate students working in various disciplines linked to multimedia analysis, processing and communications, e.g., computer vision, pattern recognition, information technology, image processing, and artificial intelligence. The book is also meant to a broader audience including practicing professionals working in image/video applications such as image processing, video surveillance, multimedia indexing and retrieval, and so on. We hope that the researchers, engineers, students and other professionals who read this book would find it informative, useful and inspirational toward their own work in one way or another.
Testing of Communicating Systems presents the latest worldwide results in both the theory and practice of the testing of communicating systems. This volume provides a forum that brings together the substantial volume of research on the testing of communicating systems, ranging from conference testing through interoperability testing to performance and QoS testing. The following topics are discussed in detail: Types of testing; Phases of the testing process; Classes of systems to be tested; and Theory and practice of testing.GBP/LISTGBP This book contains the selected proceedings of the 12th International Workshop on the Testing of Communicating Systems (formerly the International Workshop on Protocol Test Systems), sponsored by the International Federation for Information Processing (IFIP), and held in Budapest, Hungary, in September 1999. The book contains not only interesting research on testing different communication technologies from telecom and datacom systems to distributed systems, but also presents reports on the application of these results in industry. Testing of Communicating Systems will be essential reading for engineers, IT managers and research personnel working in computer science and telecommunications.
This book provides a comprehensive overview of digital signal processing for a multi-disciplinary audience. It posits that though the theory involved in digital signal processing stems from electrical, electronics, communication, and control engineering, the topic has use in other disciplinary areas like chemical, mechanical, civil, computer science, and management. This book is written about digital signal processing in such a way that it is suitable for a wide ranging audience. Readers should be able to get a grasp of the field, understand the concepts easily, and apply as needed in their own fields. It covers sampling and reconstruction of signals; infinite impulse response filter; finite impulse response filter; multi rate signal processing; statistical signal processing; and applications in multidisciplinary domains. The book takes a functional approach and all techniques are illustrated using Matlab.
Technology has advanced to such a degree over the last decade that it has been almost impossible to find up-to-date coverage of antennas. Antenna Handbook, edited by two of the world's most distinguished antenna speciallists, presents the most advanced antenna theory and designs and demonstrates their application in a wide variety of technical fields. They offer a staggering amount of in-depth data and analysis on a wide range of topics, supported by formulas, curves, and results, as well as derivations.
This book is centered on Smart grids and micro-grids, as a cost-effective method of ensuring fair and equitable access to power in urban areas. It also considers scenarios where deploying smart grids can be both cost-prohibitively expensive and logistically challenging. Deploying smart microgrids instead, offers a reliable power solution but, as is the case in smart grids, a key issue is guaranteeing usability, trust, and reliability while protecting against energy theft. This book considers aspects such as state estimation, capacity planning, demand forecasting, price signals, and demand management with respect to energy theft. Straight-forward approaches to provoking energy theft on smart grids and micro-grids include mis-recordings power consumption/generation information and exposures of personally identifiable information or sensitive information. Attack models based on mis-recorded generation and/or consumption data and exposure of personally identifiable information, are also studied. In each case, countermeasures are proposed to circumvent the power theft attacks raised. Researchers in Smart Micro-grids security, cyber-physical systems, and critical infrastructure will want to purchase this book as a reference. Professionals, Researchers, Academics and students working in security general and Security of Critical Infrastructure, Privacy, and Data Sharing will also want to purchase this book as a reference.
Today, networks are evolving to be scalable and have ever-increasing intelligence built into them, thanks to tremendous technical advances in optics, electronics, software, and professional know-how. Optical Network Standards is a single-source reference work on the specifications of networks at all levels - from components through systems to global networks, their management and services they offer. It comprises more than 25 chapters written by expert authors who are collectively responsible for generating the standards and their implementations. Key topics covered here include - harmonization and design of networks to deliver on-demand services crucial to day to day operations; architecture of optical-transport networks; optimization of SONET/SDH infra-structure for data centric services; GFP, VCAT and LCAS; distributed intelligent management and control; ASON and GMPLS; and more.
This book answers a question which came about while the author was work ing on his diploma thesis [1]: would it be better to ask for the available band width instead of probing the network (like TCP does)? The diploma thesis was concerned with long-distance musical interaction ("NetMusic"). This is a very peculiar application: only a small amount of bandwidth may be necessary, but timely delivery and reduced loss are very important. Back then, these require ments led to a thorough investigation of existing telecommunication network mechanisms, but a satisfactory answer to the question could not be found. Simply put, the answer is "yes" - this work describes a mechanism which indeed enables an application to "ask for the available bandwidth". This obvi ously does not only concern online musical collaboration any longer. Among others, the mechanism yields the following advantages over existing alterna tives: * good throughput while maintaining close to zero loss and a small bottleneck queue length * usefulness for streaming media applications due to a very smooth rate * feasibility for satellite and wireless links * high scalability Additionally, a reusable framework for future applications that need to "ask the network" for certain performance data was developed.
This book takes China Mobile's "5G +" plan as the mainline, introduces three major scenarios, nine indicators, system architecture and basic principles of 5G, and systematically explains the essence of China Mobile's "5G +" for the first time. A lot of industry use cases and solutions are introduced for 5G to bring new changes to life, industries, and social governance. This book can benefit all readers who are interested in 5G. It also can be a reference for vertical industry partners to fully understand the possible applications of 5G. Most of all, it will help to promote all industries with new developments based on 5G's new kinetic energy.
Antennas represent a critical technology in any of these wireless systems. Not only do they directly affect the received power of the system, they are also typically the largest and most visible part. Recently, the need for low-cost, low-profile, and lightweight antenna in the frequency range of the microwave/millimeter wave/THz band has regained momentum. "Basic Principles of Fresnel Antenna Arrays" provides us a with the basics of the various Fresnel Antenna approaches, in order to achieve low-cost, low-profile, and lightweight antenna in the microwave/millimeter wave band. A potential solution of the antenna problem lies in using lens technology in an array. The Fresnel zone plate lens (FZPL) antenna is in particular an interesting candidate for the array element. The limiting focusing properties of FZPL including subwave length focus are described in detail. The book further presents a novel hexagonal FZPL antenna which can be more effectively packed in an array due to its shape. Before considering the hexagonal FZPL antenna in an array, the authors investigate two ideas, described as methods to potentially improve the radiation characteristics. The first idea is to change the reference phase of the Fresnel zone radii - a novel free parameter in the usual design of zone plate's lenses and antennas. To further improve the radiation characteristics of the hexagonal FZPL antenna, a technique involving Fresnel zone rotation is investigated. The book is of interest for designers of optical systems because, taking scaling effects into account, the characteristics of diffractive quasioptical elements are valid for diffractive focusing elements of integrated optics.
China Satellite Navigation Conference (CSNC) 2015 Proceedings presents selected research papers from CSNC2015, held during 13th-15th May in Xian, China. The theme of CSNC2015 is Opening-up, Connectivity and Win-win. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 10 topics to match the corresponding sessions in CSNC2015, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications. SUN Jiadong is the Chief Designer of the Compass/ BDS, and the academician of Chinese Academy of Sciences (CAS); LIU Jingnan is a professor at Wuhan University. FAN Shiwei is a researcher at China Satellite Navigation Office; LU Xiaochun is an academician of Chinese Academy of Sciences (CAS).
Volume II covers antenna theory and design, describing a number of antenna types, including receiving, wire and loop, horn, frequency-independent, microstrip, refelector, and lens antennas. This section also includes arrays, providing array theory as well as exploring waveguide-fed slot arrays, peiodic arrays, and aperiodic arrays.
Audio Signal Processing for Next-Generation Multimedia Communication Systems presents cutting-edge digital signal processing theory and implementation techniques for problems including speech acquisition and enhancement using microphone arrays, new adaptive filtering algorithms, multichannel acoustic echo cancellation, sound source tracking and separation, audio coding, and realistic sound stage reproduction. This book's focus is almost exclusively on the processing, transmission, and presentation of audio and acoustic signals in multimedia communications for telecollaboration where immersive acoustics will play a great role in the near future.
This book describes the design of a receiver front-end circuit for operation in the 60GHz range in 90nm CMOS. Physical layout of the test circuit and post-layout simulations for the implementation of a test chip including the QVCO and the first stage divider are also presented. The content of this book is particularly of interest to those working on mm-wave frequency generation and signal reception.
This book focuses on the analysis and design of low-density parity-check (LDPC) coded modulations, which are becoming part of several current and future communication systems, such as high-throughput terrestrial and satellite wireless networks. In this book, a two-sided perspective on the design of LDPC coded systems is proposed, encompassing both code/modulation optimization (transmitter side) and detection algorithm design (receiver side). After introducing key concepts on error control coding, in particular LDPC coding, and detection techniques, the book presents several relevant applications. More precisely, by using advanced performance evaluation techniques, such as extrinsic information transfer charts, the optimization of coded modulation schemes are considered for (i) memoryless channels, (ii) dispersive and partial response channels, and (iii) concatenated systems including differential encoding. This book is designed to be used by graduate students working in the field of communication theory, with particular emphasis on LDPC coded communication schemes, and industry experts working on related fields.
The most complete compilation of millimeter-wave theory and data available, this book addresses those phenomenological characteristics of radar clutter and propagation in the millimeter-wave region that are of particular importance in the design, test and permutation of millimeter-wave sensors. The text provides in-depth information on both electromagnetic propagation and clutter backscatter effects in the millimeter-wave region. Nicholas C. Currie is also the editor of "Radar Reflectivity Measurement: Techniques and Applications" and "Principles and Applications of Millimeter-Wave Radar".
This book describes innovative design solutions for radio-frequency identification (RFID) tags and antennas. Focusing mainly on passive ultra-high-frequency (UHF)-RFID tag antennas, it examines novel approaches based on the use of metamaterial-inspired resonators and other resonant structures as radiating elements. It also offers an exhaustive analysis of the radiation properties of several metamaterial-inspired resonators such as the split ring resonator (SRR) and related structures. Further, it discusses in detail an innovative technology for the RFID tagging of optical discs, which has demonstrated a significant improvement over the state of the art and resulted in a patent. By covering the entire research cycle of theory, design/simulation and fabrication/evaluation of RFID tags and antennas, while also reporting on cutting-edge technologies, the book provides graduate students, researchers and practitioners alike with a comprehensive and timely overview of RFID systems, and a closer look at several radiating structures.
The Nonuniform Discrete Fourier Transform and its Applications in Signal Processing is organized into seven chapters. Chapter 1 introduces the problem of computing frequency samples of the z-transform of a finite-length sequence, and reviews the existing techniques. Chapter 2 develops the basics of the NDFT including its definition, properties and computational aspects. The NDFT is also extended to two dimensions. The ideas introduced here are utilized to develop applications of the NDFT in the following four chapters. Chapter 3 proposes a nonuniform frequency sampling technique for designing 1-D FIR digital filters. Design examples are presented for various types of filters. Chapter 4 utilizes the idea of the 2-D NDFT to design nonseparable 2-D FIR filters of various types. The resulting filters are compared with those designed by other existing methods and the performances of some of these filters are investigated by applying them to the decimation of digital images. Chapter 5 develops a design technique for synthesizing antenna patterns with nulls placed at desired angles to cancel interfering signals coming from these directions. Chapter 6 addresses the application of the NDFT in decoding dual-tone multi-frequency (DTMF) signals and presents an efficient decoding algorithm based on the subband NDFT (SB-NDFT), which achieves a fast, approximate computation of the NDFT. Concluding remarks are included in Chapter 7. The Nonuniform Discrete Fourier Transform and its Applications in Signal Processing serves as an excellent reference for researchers.
|
![]() ![]() You may like...
|