Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > States of matter > Condensed matter physics (liquids & solids)
This book presents those terms, concepts, equations, and models that are routinely used in describing the operational behavior of solid state devices. The second edition provides many new problems and illustrative examples.
Quantum Wells, Wires and Dots provides all the essential information, both theoretical and computational, to develop an understanding of the electronic, optical and transport properties of these semiconductor nanostructures. The book will lead the reader through comprehensive explanations and mathematical derivations to the point where they can design semiconductor nanostructures with the required electronic and optical properties for exploitation in these technologies. This fully revised and updated 4th edition features new sections that incorporate modern techniques and extensive new material including: * Properties of non-parabolic energy bands * Matrix solutions of the Poisson and Schrodinger equations * Critical thickness of strained materials * Carrier scattering by interface roughness, alloy disorder and impurities * Density matrix transport modelling * Thermal modelling Written by well-known authors in the field of semiconductor nanostructures and quantum optoelectronics, this user-friendly guide is presented in a lucid style with easy to follow steps, illustrative examples and questions and computational problems in each chapter to help the reader build solid foundations of understanding to a level where they can initiate their own theoretical investigations. Suitable for postgraduate students of semiconductor and condensed matter physics, the book is essential to all those researching in academic and industrial laboratories worldwide. Instructors can contact the authors directly ([email protected] / [email protected]) for Solutions to the problems.
Reviews in Plasmonics is a comprehensive collection of current trends and emerging hot topics in the field of Plasmonics and closely related disciplines. It summarizes the years progress in Plasmonics and its applications, with authoritative analytical reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of Plasmonics.
Much data has been collected from experiments on the kinetios of
radical reactions in different solids, but to date, this has not
been presented in book format in a thorough and comprehensive way.
This book makes the experimental data accessible for all chemists
involved in these reactions. Various models of the tunnel atom
transfer are analyzed in order to explain the kinetic isotope
effect in solid phase reactions and photoinitiated radical
reactions are inspected for the kinetic non-equivalence of
particles and factors affecting their reactivity. Topics covered
include:
Solid State Physics, Volume 71 provides the latest volume in this long-running series. This latest volume highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors.
The book is an introduction to the science and possible applications of Graphene, the first one-atom-thick crystalline form of matter. Discovered in 2004 by now Nobelists Geim and Novoselov, the single layer of graphite, a hexagonal network of carbon atoms, has astonishing electrical and mechanical properties. It supports the highest electrical current density of any material, far exceeding metals copper and silver. Its absolute minimum thickness, 0.34 nanometers, provides an inherent advantage in possible forms of digital electronics past the era of Moore's Law. The book describes the unusual physics of the material, that it offers linear rather than parabolic energy bands. The Dirac-like electron energy bands lead to high constant carrier speed, similar to light photons. The lattice symmetry further implies a two-component wave-function, which has a practical effect of cancelling direct backscattering of carriers. The resulting high carrier mobility allows observation of the Quantum Hall Effect at room temperature, unique to Graphene. The material is two-dimensional, but in sizes micrometers nearly to meters displays great tensile strength but vanishing resistance to bending. The book reviews theoretical predictions of excessive atomic vibrational motion, tied to the dimensionality. As explained, these predictions seem not of practical consequence, and such effects are unobservable in samples up to nearly one meter size. The disintegration temperature of this refractory material is estimated as 4900K, certainly higher than the measured sublimation temperature of graphite, 3900K. As explained, applications of Graphene come in classes that range from additives to composite materials to field effect transistor elements capable of extremely high frequency operation. The classes of applications correlate with differing methods of fabrication, from inexpensive chemical exfoliations of graphite, to chemical vapour deposition on catalytic substrates as Cu and Ni, at temperatures around 1300K. The book reviews potential applications within existing electronics, to include interconnect wires, flash-memory elements, and high frequency field effect transistors. The chance to supplant the dominant CMOS family of silicon logic devices is assessed.
Advances in nanotechnology have allowed physicists and engineers to miniaturize electronic structures to the limit where finite-size related phenomena start to impact their properties. This book discusses such phenomena and models made for their description. The book starts from the semiclassical description of nonequilibrium effects, details the scattering theory used for quantum transport calculations, and explains the main interference effects. It also describes how to treat fluctuations and correlations, how interactions affect transport through small islands, and how superconductivity modifies these effects. The last two chapters describe new emerging fields related with graphene and nanoelectromechanics. The focus of the book is on the phenomena rather than formalism, but the book still explains in detail the main models constructed for these phenomena. It also introduces a number of electronic devices, including the single-electron transistor, the superconducting tunnel junction refrigerator, and the superconducting quantum bit.
The aim of this textbook is to provide an overview of nanophotonics, a discipline which was developed around the turn of the millennium. This unique and rapidly evolving subject area is the result of a collaboration between various scientific communities working on different aspects of light-matter interaction at the nanoscale. These include near-field optics and super-resolution microscopy, photonic crystals, diffractive optics, plasmonics, optoelectronics, synthesis of metallic and semiconductor nanoparticles, two-dimensional materials, and metamaterials. The book is aimed at graduate students with a background in physics, electrical engineering, material science, or chemistry, as well as lecturers and researchers working within these fields.
Generation of Polymers and Nanomaterials at Liquid-Liquid Interfaces: Application to Crystalline, Light Emitting, and Energy Materials, Second Edition is an innovative guide to the synthesis and processing of materials through liquid-liquid interfaces. This second edition has been revised and expanded, with a new chapter on light emitting materials and increased emphasis towards applications. The book aims to highlight the versatility of the interface between two liquids, providing a unique environment for synthesizing materials with highly tuned, desirable properties. In this revised and expanded second edition, the advanced applications of the synthesized materials and the two-phase systems are highlighted, with real potential within flexible electronics, energy storage, enhanced oil recovery, and sensors. This is supported by detailed coverage of interfacial processes and the fundamental physical chemistry behind them. The first two chapters provide an overview of interfaces in natural and biological systems, and outline the fundamental properties of the interface. Chapters 3 and 4 are devoted to the synthesis and self-organization of nanoparticles and polymers through interfacial systems. The synthesis of conductive, fluorescent and conventional polymers and their properties are extensively covered. Chapters 5 and 6 focus on novel applications. This book is of interest to researchers, scientists, and advanced students, in polymer synthesis, polymer chemistry, polymer science, nanomaterials and nanotechnology, polymer composites, materials science, energy, flexible electronics, and chemical engineering. In industry, this supports scientists, R&D, and other professionals, working with polymeric materials for applications in energy, electronics, sensors, and oil & gas.
The Effect of Long Term Thermal Exposure on Plastics and Elastomers, Second Edition brings together a wide range of essential data on the effect of long-term thermal exposure on plastics and elastomers, enabling engineers to make optimal material choices and design decisions. This second edition has been thoroughly revised to include the latest data and materials. This highly valuable handbook will support engineers, product designers, R&D professionals, and scientists who are working on plastics products or parts for high temperature environments across a range of industries. This readily available data will make it easy for practitioners to learn about plastic materials and their long- term thermal exposure without having to search the general literature or depend on suppliers. This book will also be of interest to researchers and advanced students in plastics engineering, polymer processing, coatings, and materials science and engineering.
This is the second volume in the series of books covering practical aspects of synthesis and characterization of various categories of nanomaterials taking into consideration the most up to date research publications. The aim of the book series is to provide students and researchers practical information such as synthetic procedures, characterization protocols and mechanistic insights to enable them to either reproduce well established methods or plan for new syntheses of size and shaped controlled nanomaterials. The second volume focuses on multifunctional nanomaterials.
This book covers additive manufacturing of polymers, metals, ceramics, fiber reinforced polymer composites, energy harvesting materials, and biomaterials. Hybrid manufacturing is discussed. Topology optimization methodology is described and finite element software examples are provided. The book is ideal for graduate students and career starters in the industry.
Frustrated spin systems have been first investigated five decades ago. Well-known examples include the Ising model on the antiferromagnetic triangular lattice studied by G H Wannier in 1950 and the Heisenberg helical structure discovered independently by A Yoshimori, J Villainn and T A Kaplan in 1959. However, extensive investigations on frustrated spin systems have really started with the concept of frustration introduced at the same time by G Toulouse and by J Villain in 1977 in the context of spin glasses. The frustration is generated by the competition of different kinds of interaction and/or by the lattice geometry. As a result, in the ground state all bonds are not fully satisfied. In frustrated Ising spin systems, a number of spins behave as free spins. In frustrated vector spin systems, the ground-state configuration is usually non-collinear. The ground state of frustrated spin systems is therefore highly degenerate and new induced symmetries give rise to unexpected behaviors at finite temperatures. Many properties of frustrated systems are still not well understood at present. Theoretically, recent studies shown in this book reveal that established theories, numerical simulations as well as experimental techniques have encountered many difficulties in dealing with frustrated systems. In some sense, frustrated systems provide an excellent testing ground for approximations and theories. Experimentally, more and more frustrated materials are discovered with interesting properties for applications.
This iconoclastic book proposes that superconductivity is misunderstood in contemporary science and that this hampers scientific and technological development. Superconductivity is the ability of some metals to carry electric current without resistance at very low temperatures. Properly understanding superconductivity would facilitate finding materials that superconduct at room temperature, providing great benefits to society.The conventional BCS theory of superconductivity, developed in 1957 and awarded the Nobel Prize in 1972, is generally believed to fully explain the lower temperature 'conventional superconductors' but not the more recently discovered 'high temperature superconductors', for which the charge carriers are positive Holes rather than negative electrons. Instead, this book proposes the holistic view that Holes are responsible for superconductivity in all materials. It explains in simple terms how the most fundamental property of all superconductors, that they expel H-fields (the Meissner effect), can be understood with Hole carriers and cannot be explained by BCS. It describes the historical development of the conventional theory and why it went astray, and credits pre-BCS researchers for important insights that were forgotten after BCS but are in fact relevant for the proper understanding of superconductivity.The book's author, Jorge E Hirsch, is a renowned expert in the field of condensed matter physics who has published over 250 articles on the subject. He has developed the theory of 'Hole superconductivity', the focus of this book, over the last 30 years. He is also the inventor of the H-index, a bibliometric measure of scientific impact which, he admits in this book, fails to identify high scientific achievement in the field of superconductivity.
The fractional quantum Hall effect has been one of the most active areas of research in quantum condensed matter physics for nearly four decades, serving as a paradigm for unexpected and exotic emergent behavior arising from interactions. This book, featuring a collection of articles written by experts and a Foreword by Klaus von Klitzing, the discoverer of quantum Hall effect and winner of 1985 Nobel Prize in physics, aims to provide a coherent account of the exciting new developments and the current status of the field.
In this book, the equilibrium and nonequilibrium properties of continuous phase transitions are studied in various systems, with a special emphasis on understanding how well-established universal traits at equilibrium may be extended into the dynamic realm, going beyond the paradigmatic Kibble-Zurek mechanism of defect formation. This book reports on the existence of a quantum phase transition in a system comprising just a single spin and a bosonic mode (the quantum Rabi model). Though critical phenomena are inherent to many-body physics, the author demonstrates that this small and ostensibly simple system allows us to explore the rich phenomenology of phase transitions, both in- and out-of-equilibrium. Moreover, the universal traits of this quantum phase transition may be realized in a single trapped-ion experiment, thus avoiding the need to scale up the number of constituents. In this system, the phase transition takes place in a suitable limit of system parameters rather than in the conventional thermodynamic limit - a novel notion that the author and his collaborators have dubbed the finite-component system phase transition. As such, the results gathered in this book will open promising new avenues in our understanding and exploration of quantum critical phenomena.
This book represents a significant advance in our understanding of the synthesis and properties of two-dimensional (2D) materials. The author's work breaks new ground in the understanding of a number of 2D crystals, including atomically thin transition metal dichalcogenides, graphene, and their heterostructures, that are technologically important to next-generation electronics. In addition to critical new results on the direct growth of 2D heterostructures, it also details growth mechanisms, surface science, and device applications of "epi-grade" 2D semiconductors, which are essential to low-power electronics, as well as for extending Moore's law. Most importantly, it provides an effective alternative to mechanically exfoliate 2D layers for practical applications.
Covering basic physical concepts, experimental methods, and applications, this book is an indispensable text on the fascinating science of magnetism, and an invaluable source of practical reference data. Accessible, authoritative, and assuming undergraduate familiarity with vectors, electromagnetism and quantum mechanics, this textbook is well suited to graduate courses. Emphasis is placed on practical calculations and numerical magnitudes - from nanoscale to astronomical scale - focussing on modern applications, including permanent magnet structures and spin electronic devices. Each self-contained chapter begins with a summary, and ends with exercises and further reading. The book is thoroughly illustrated with over 600 figures to help convey concepts and explain ideas clearly. Easily digestible tables and data sheets provide a wealth of useful information on magnetic properties. The thirty-eight principal magnetic materials, and many more related compounds, are treated in detail.
Emphasizing the static and dynamic behaviors of nanocomposite single- or multilayered structures in the framework of continuum mechanics-based approaches, Mechanics of Nanocomposites: Homogenization and Analysis investigates mechanical behaviors of polymeric matrices strengthened via various nanofillers and nanoparticles such as carbon nanotubes (CNTs), graphene platelets (GPLs), and graphene oxides (GOs). It covers equivalent properties of nanocomposites that are obtained via homogenization techniques based on micromechanics approaches. In addition, this comprehensive book: Discusses the effects of various nanofillers and identifies the amount of the improvement that can be induced in the stiffness of the polymeric nanocomposites by adding a finite content of the aforementioned nanosize reinforcements Magnifies the effect of the number of the stacking plies of the multi-layered nanocomposite structures on both static and dynamic responses of the continuous systems manufactured from such sandwich structures Presents a wide range of analytical and numerical solution procedures Investigates the effects of porosity along with mechanical characteristics of nanocomposites Considers the time-dependency of the material properties of the viscoelastic polymeric nanocomposite structures Performs analyses using an energy-based approach incorporated with the strain-displacement relations of both classical and higher-order shear deformable beam, plate, or shell theorems Aimed at researchers, academics, and professionals working across mechanical, materials, and other areas of engineering, this work ensures that readers are equipped to fully understand the mechanical characteristics of nanocomposite structures so that they can design, develop, and apply these materials effectively.
First published in 1989, this book contained the first systematic account of magnetoresistance in metals, the study of which has provided solid-state physicists with much valuable information about electron motion in metals. The electrical resistance of a metal is usually changed when a magnetic field is applied to it; at low temperatures the change may be very large indeed and when magnetic breakdown is involved, very complex. Every metal behaves differently, and the effect is highly dependent on the direction of the field relative to the crystal axes. Quite apart from its usefulness for determining the Ferni surfaces of individual metals, the phenomenon presents many interesting problems in its own right; it is the phenomenon, rather than its applications, that Professor Pippard concentrates on in this book. The level of treatment is aimed at readers with a basic knowledge of undergraduate solid-state physics, and makes no great demand on mathematical ability. The text is copiously illustrated with real experimental results.
21st Century Nanoscience - A Handbook: Low-Dimensional Materials and Morphologies (Volume 4) will be the most comprehensive, up-to-date large reference work for the field of nanoscience. Handbook of Nanophysics by the same editor published in the fall of 2010 and was embraced as the first comprehensive reference to consider both fundamental and applied aspects of nanophysics. This follow-up project has been conceived as a necessary expansion and full update that considers the significant advances made in the field since 2010. It goes well beyond the physics as warranted by recent developments in the field. This fourth volume in a ten-volume set covers low-dimensional materials and morphologies. Key Features: Provides the most comprehensive, up-to-date large reference work for the field. Chapters written by international experts in the field. Emphasises presentation and real results and applications. This handbook distinguishes itself from other works by its breadth of coverage, readability and timely topics. The intended readership is very broad, from students and instructors to engineers, physicists, chemists, biologists, biomedical researchers, industry professionals, governmental scientists, and others whose work is impacted by nanotechnology. It will be an indispensable resource in academic, government, and industry libraries worldwide. The fields impacted by nanophysics extend from materials science and engineering to biotechnology, biomedical engineering, medicine, electrical engineering, pharmaceutical science, computer technology, aerospace engineering, mechanical engineering, food science, and beyond.
Accessible and compact approach Contains interesting examples from everyday life (including the Paris Metro, a water spider, a gecko, and duck feathers) Accompanied by additional exercises to enhance understanding available for download from the CRC Press website
This book introduces a variety of basic sciences and applications of the nanocomposites and heterostructures of functional oxides. The presence of a high density of interfaces and the differences in their natures are described by the authors. Both nanocomposites and heterostructures are detailed in depth by researchers from each of the research areas in order to compare their similarities and differences. A new interfacial material of heterostructure of strongly correlated electron systems is introduced. |
You may like...
Palaces Of Stone - Uncovering Ancient…
Mike Main, Thomas Huffman
Paperback
We Were Perfect Parents Until We Had…
Vanessa Raphaely, Karin Schimke
Paperback
Breaking A Rainbow, Building A Nation…
Rekgotsofetse Chikane
Paperback
Snyman's Criminal Law
Kallie Snyman, Shannon Vaughn Hoctor
Paperback
1 Recce: Volume 3 - Onsigbaarheid Is Ons…
Alexander Strachan
Paperback
|