![]() |
![]() |
Your cart is empty |
||
Books > Reference & Interdisciplinary > Communication studies > Information theory > Cybernetics & systems theory
Model reduction and coarse-graining are important in many areas of science and engineering. How does a system with many degrees of freedom become one with fewer? How can a reversible micro-description be adapted to the dissipative macroscopic model? These crucial questions, as well as many other related problems, are discussed in this book. All contributions are by experts whose specialities span a wide range of fields within science and engineering.
This work addresses the topic of philosophical complexity, which shares certain assumptions with scientific complexity, cybernetics, and General Systems Theory, but which is also developing as a subject field in its own right. Specifically, the post-structural reading of philosophical complexity that was pioneered by Paul Cilliers is further developed in this study. To this end, the ideas of a number of contemporary French post-structural theorists and their predecessors - including Derrida, Nancy, Bataille, Levinas, Foucault, Saussure, Nietzsche, Heidegger, and Hegel - are introduced. The implications that their various insights hold for our understanding of complex human systems are teased out at the hand of the themes of economy, (social) ontology, subjectivity, epistemology, and ethics. The analyses are also illuminated at the hand of the problematic of the foreigner and the related challenges of showing hospitality to foreigners. The study presents a sophisticated account of both philosophical complexity and philosophies of difference. By relating these subject fields, the study also extends our understanding of philosophical complexity, and offers an original characterisation of the aforementioned philosophers as complex thinkers.
This book presents a systematic study on the inherent complexity in fuzzy systems, resulting from the large number and the poor transparency of the fuzzy rules. The study uses a novel approach for complexity management, aimed at compressing the fuzzy rule base by removing the redundancy while preserving the solution. The compression is based on formal methods for presentation, manipulation, transformation and simplification of fuzzy rule bases.
This monograph has arisen from the multidisciplinary research extending over biology, robotics and hybrid systems theory. It is inspired by modeling reactive behavior of the immune system cell population, where each cell is considered an independent agent. The authors formulate the optimal control of maximizing the probability of robotic presence in a given region and discuss the application of the Minimum Principle for partial differential equations to this problem.
Supervision, condition-monitoring, fault detection, fault diagnosis and fault management play an increasing role for technical processes and vehicles in order to improve reliability, availability, maintenance and lifetime. For safety-related processes fault-tolerant systems with redundancy are required in order to reach comprehensive system integrity. This book is a sequel of the book Fault-Diagnosis Systems published in 2006, where the basic methods were described. After a short introduction into fault-detection and fault-diagnosis methods the book shows how these methods can be applied for a selection of 20 real technical components and processes as examples, such as: Electrical drives (DC, AC) Electrical actuators Fluidic actuators (hydraulic, pneumatic) Centrifugal and reciprocating pumps Pipelines (leak detection) Industrial robots Machine tools (main and feed drive, drilling, milling, grinding) Heat exchangers Also realized fault-tolerant systems for electrical drives, actuators and sensors are presented. The book describes why and how the various signal-model-based and process-model-based methods were applied and which experimental results could be achieved. In several cases a combination of different methods was most successful. The book is dedicated to graduate students of electrical, mechanical, chemical engineering and computer science and for engineers.
Over the last thirty years an abundance of papers have been writ ten on adaptive dynamic control systems. Nevertheless, now it may be predicted with confidence that the adaptive mechanics, a new division, new line of inquiry in one of the violently developing fields of cybernetic mechanics, is emerging. The birth process falls far short of being com pleted. There appear new problems and methods of their solution in the framework of adaptive nonlinear dynamics. Therefore, the present work cannot be treated as a certain polished, brought-to-perfection school textbook. More likely, this is an attempt to show a number of well known scientific results in the parametric synthesis of nonlinear systems (this, strictly speaking, accounts for the availability of many reviews), as well as to bring to notice author's developments on this question undoubtedly modern and topical. The nonlinear, and practically La grangian, systems cover a wide class of classical objects in theoretical mechanics, and primarily solid-body (robotic, gyroscopic, rocket-cosmic, and other) systems. And what is rather important, they have a direct trend to practical application. To indicate this discussion, I should like to notice that it does not touch upon the questions concerned with the linear and stochastic con trolobjects. Investigated are only nonlinear deterministic systems being in the conditions when some system parameters are either unknown or beyond the reach of measurement, or they execute an unknown limited and fairly smooth drift in time."
The book addresses the control issues such as stability analysis, control synthesis and filter design of Markov jump systems with the above three types of TPs, and thus is mainly divided into three parts. Part I studies the Markov jump systems with partially unknown TPs. Different methodologies with different conservatism for the basic stability and stabilization problems are developed and compared. Then the problems of state estimation, the control of systems with time-varying delays, the case involved with both partially unknown TPs and uncertain TPs in a composite way are also tackled. Part II deals with the Markov jump systems with piecewise homogeneous TPs. Methodologies that can effectively handle control problems in the scenario are developed, including the one coping with the asynchronous switching phenomenon between the currently activated system mode and the controller/filter to be designed. Part III focuses on the Markov jump systems with memory TPs. The concept of -mean square stability is proposed such that the stability problem can be solved via a finite number of conditions. The systems involved with nonlinear dynamics (described via the Takagi-Sugeno fuzzy model) are also investigated. Numerical and practical examples are given to verify the effectiveness of the obtained theoretical results. Finally, some perspectives and future works are presented to conclude the book.
This book presents a treatise on the theory and modeling of second-order stationary processes, including an exposition on selected application areas that are important in the engineering and applied sciences. The foundational issues regarding stationary processes dealt with in the beginning of the book have a long history, starting in the 1940s with the work of Kolmogorov, Wiener, Cramer and his students, in particular Wold, and have since been refined and complemented by many others. Problems concerning the filtering and modeling of stationary random signals and systems have also been addressed and studied, fostered by the advent of modern digital computers, since the fundamental work of R.E. Kalman in the early 1960s. The book offers a unified and logically consistent view of the subject based on simple ideas from Hilbert space geometry and coordinate-free thinking. In this framework, the concepts of stochastic state space and state space modeling, based on the notion of the conditional independence of past and future flows of the relevant signals, are revealed to be fundamentally unifying ideas. The book, based on over 30 years of original research, represents a valuable contribution that will inform the fields of stochastic modeling, estimation, system identification, and time series analysis for decades to come. It also provides the mathematical tools needed to grasp and analyze the structures of algorithms in stochastic systems theory.
This monograph is devoted to construction of novel theoretical approaches of m- eling non-homogeneous structural members as well as to development of new and economically ef?cient (simultaneously keeping the required high engineering ac- racy)computationalalgorithmsofnonlineardynamics(statics)ofstronglynonlinear behavior of either purely continuous mechanical objects (beams, plates, shells) or hybrid continuous/lumped interacting mechanical systems. In general, the results presented in this monograph cannot be found in the - isting literature even with the published papers of the authors and their coauthors. We take a challenging and originally developed approach based on the integrated mathematical-numerical treatment of various continuous and lumped/continuous mechanical structural members, putting emphasis on mathematical and physical modeling as well as on the carefully prepared and applied novel numerical - gorithms used to solve the derived nonlinear partial differential equations (PDEs) mainly via Bubnov-Galerkin type approaches. The presented material draws on the ?elds of bifurcation, chaos, control, and s- bility of the objects governed by strongly nonlinear PDEs and ordinary differential equations (ODEs),and may have a positive impact on interdisciplinary ? elds of n- linear mechanics, physics, and applied mathematics. We show, for the ?rst time in a book, the complexity and fascinating nonlinear behavior of continual mechanical objects, which cannot be found in widely reported bifurcational and chaotic dyn- ics of lumped mechanical systems, i. e. , those governed by nonlinear ODEs.
This book explains why complex systems research is important in understanding the structure, function and dynamics of complex natural and social phenomena. It illuminates how complex collective behavior emerges from the parts of a system, due to the interaction between the system and its environment. Readers will learn the basic concepts and methods of complex system research. The book is not highly technical mathematically, but teaches and uses the basic mathematical notions of dynamical system theory, making the book useful for students of science majors and graduate courses.
This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on traffic instabilities and model calibration/validation present these topics in a novel and systematic way. Finally, the theoretical framework is shown at work in selected applications such as traffic-state and travel-time estimation, intelligent transportation systems, traffic operations management, and a detailed physics-based model for fuel consumption and emissions.
Here, the authors present modern methods of analysis for nonlinear systems which may occur in fields such as physics, chemistry, biology, or economics. They concentrate on the following topics, specific for such systems: (a) constructive existence results and regularity theorems for all weak solutions; (b) convergence results for solutions and their approximations; (c) uniform global behavior of solutions in time; and (d) pointwise behavior of solutions for autonomous problems with possible gaps by the phase variables. The general methodology for the investigation of dissipative dynamical systems with several applications including nonlinear parabolic equations of divergent form, nonlinear stochastic equations of parabolic type, unilateral problems, nonlinear PDEs on Riemannian manifolds with or without boundary, contact problems as well as particular examples is established. As such, the book is addressed to a wide circle of mathematical, mechanical and engineering readers.
The theory of linear functional observers, which is the subject of this book, is increasingly becoming a popular researched topic because of the many advantages it presents in state observation and control system design. This book presents recent information on the current state of the art research in this field. This book will serve as a useful reference to researchers in this area of research to understand the fundamental concepts relevant to the theory of functional observers and to gather most recent advancements in the field. This book is useful to academics and postgraduate students researching into the theory of linear functional observers. This book can also be useful for specialized final year undergraduate courses in control systems engineering and applied mathematics with a research focus.
In this book for the first time two scientific fields - consensus
formation and synchronization of communications - are presented
together and examined through their interrelational aspects, of
rapidly growing importance. Both fields have indeed attracted
enormous research interest especially in relation to complex
networks.
Available for the first time in English, this two-volume course on theoretical and applied mechanics has been honed over decades by leading scientists and teachers, and is a primary teaching resource for engineering and maths students at St. Petersburg University. The course addresses classical branches of theoretical mechanics (Vol. 1), along with a wide range of advanced topics, special problems and applications (Vol. 2). Among the special applications addressed in this second volume are: stability of motion, nonlinear oscillations, dynamics and statics of the Stewart platform, mechanics under random forces, elements of control theory, relations between nonholonomic mechanics and the control theory, vibration and autobalancing of rotor systems, physical theory of impact, statics and dynamics of a thin rod. This textbook is aimed at students in mathematics and mechanics and at post-graduates and researchers in analytical mechanics.
"AutomaticControl of Atmospheric and Space Flight Vehicles" is perhaps the firstbook on the market to present a unified and straightforwardstudyof the design and analysis of automatic control systems for both atmospheric and space flight vehicles.Covering basic control theory and design concepts, it is meantas a textbook for senior undergraduate and graduate students in moderncourses on flight control systems. In addition to the basics of flight control, this book covers a number ofupper-level topicsand will therefore be of interest not only to advanced students, but also toresearchers and practitioners in aeronautical engineering, applied mathematics, and systems/control theory."
Mastering the complexity of innovative systems is a challenging aspect of design and product development. Only a systematic approach can help to embed an increasing degree of smartness in devices and machines, allowing them to adapt to variable conditions or harsh environments. At the same time, customer needs have to be identified before they can be translated into consistent technical requirements. The field of Systems Engineering provides a method, a process, suitable tools and languages to cope with the complexity of various systems such as motor vehicles, robots, railways systems, aircraft and spacecraft, smart manufacturing systems, microsystems, and bio-inspired devices. It makes it possible to trace the entire product lifecycle, by ensuring that requirements are matched to system functions, and functions are matched to components and subsystems, down to the level of assembled parts. This book discusses how Systems Engineering can be suitably deployed and how its benefits are currently being exploited by Product Lifecycle Management. It investigates the fundamentals of Model Based Systems Engineering (MBSE) through a general introduction to this topic and provides two examples of real systems, helping readers understand how these tools are used. The first, which involves the mechatronics of industrial systems, serves to reinforce the main content of the book, while the second describes an industrial implementation of the MBSE tools in the context of developing the on-board systems of a commercial aircraft.
This volume provides an introduction to and overview of the emerging field of interconnected networks which include multilayer or multiplex networks, as well as networks of networks. Such networks present structural and dynamical features quite different from those observed in isolated networks. The presence of links between different networks or layers of a network typically alters the way such interconnected networks behave - understanding the role of interconnecting links is therefore a crucial step towards a more accurate description of real-world systems. While examples of such dissimilar properties are becoming more abundant - for example regarding diffusion, robustness and competition - the root of such differences remains to be elucidated. Each chapter in this topical collection is self-contained and can be read on its own, thus making it also suitable as reference for experienced researchers wishing to focus on a particular topic.
This book collects the works presented at the 8th International Conference on Complex Networks (CompleNet) 2017 in Dubrovnik, Croatia, on March 21-24, 2017. CompleNet aims at bringing together researchers and practitioners working in areas related to complex networks. The past two decades has witnessed an exponential increase in the number of publications within this field. From biological systems to computer science, from economic to social systems, complex networks are becoming pervasive in many fields of science. It is this interdisciplinary nature of complex networks that CompleNet aims at addressing. The last decades have seen the emergence of complex networks as the language with which a wide range of complex phenomena in fields as diverse as physics, computer science, and medicine (to name a few) can be properly described and understood. This book provides a view of the state-of-the-art in this dynamic field and covers topics such as network controllability, social structure, online behavior, recommendation systems, and network structure.
In May 2002 a number of about 20 scientists from various disciplines were invited by the Berlin-Brandenburg Academy of Sciences and Humanities to participate in an interdisciplinary workshop on structures and structure generating processes. The site was the beautiful little castle of Blankensee, south of Berlin. The disciplines represented ranged from mathematics and information theory, over various ?elds of engineering, biochemistry and biology, to the economic and social sciences. All participants presented talks explaining the nature of structures considered in their ?elds and the associated procedures of analysis. It soon became evident that the study of structures is indeed a common c- cern of virtually all disciplines. The motivation as well as the methods of analysis, however, differ considerably. In engineering, the generation of artifacts, such as infrastructures or technological processes, are of primary interest. Frequently, the analysis aims there at de?ning a simpli?ed mathematical model for the optimization of the structures and the structure generating processes. Mathematical or heuristic methods are applied, the latter preferably of the type of biology based evolutionary algorithms. On the other hand, setting up complex technical structures is not pos- ble by such simpli?ed model calculations but requires a different and less model but rather knowledge-based type of approach, using empirical rules rather than formal equations. In biochemistry, interest is frequently focussed on the structures of molecules, such as proteins or ribonucleic acids. Again, optimal structures can usually be de?ned.
This book considers the design and development of nanoelectronic computing circuits, systems and architectures focusing particularly on memristors, which represent one of today's latest technology breakthroughs in nanoelectronics. The book studies, explores, and addresses the related challenges and proposes solutions for the smooth transition from conventional circuit technologies to emerging computing memristive nanotechnologies. Its content spans from fundamental device modeling to emerging storage system architectures and novel circuit design methodologies, targeting advanced non-conventional analog/digital massively parallel computational structures. Several new results on memristor modeling, memristive interconnections, logic circuit design, memory circuit architectures, computer arithmetic systems, simulation software tools, and applications of memristors in computing are presented. High-density memristive data storage combined with memristive circuit-design paradigms and computational tools applied to solve NP-hard artificial intelligence problems, as well as memristive arithmetic-logic units, certainly pave the way for a very promising memristive era in future electronic systems. Furthermore, these graph-based NP-hard problems are solved on memristive networks, and coupled with Cellular Automata (CA)-inspired computational schemes that enable computation within memory. All chapters are written in an accessible manner and are lavishly illustrated. The book constitutes an informative cornerstone for young scientists and a comprehensive reference to the experienced reader, hoping to stimulate further research on memristive devices, circuits, and systems.
This book is based on the outcome of the "2012 Interdisciplinary Symposium on Complex Systems" held at the island of Kos. The book consists of 12 selected papers of the symposium starting with a comprehensive overview and classification of complexity problems, continuing by chapters about complexity, its observation, modeling and its applications to solving various problems including real-life applications. More exactly, readers will have an encounter with the structural complexity of vortex flows, the use of chaotic dynamics within evolutionary algorithms, complexity in synthetic biology, types of complexity hidden inside evolutionary dynamics and possible controlling methods, complexity of rugged landscapes, and more. All selected papers represent innovative ideas, philosophical overviews and state-of-the-art discussions on aspects of complexity. The book will be useful as instructional material for senior undergraduate and entry-level graduate students in computer science, physics, applied mathematics and engineering-type work in the area of complexity. The book will also be valuable as a resource of knowledge for practitioners who want to apply complexity to solve real-life problems in their own challenging applications. The authors and editors hope that readers will be inspired to do their own experiments and simulations, based on information reported in this book, thereby moving beyond the scope of the book.
Discrete Event Systems: Analysis and Control is the proceedings of WODES2000 (the 5th Workshop on Discrete Event Systems, held in Ghent, Belgium, on August 21-23, 2000). This book provides a survey of the current state of the art in the field of modeling, analysis and control synthesis of discrete event systems, lecture notes for a mini course on sensitivity analysis for performance evaluation of timed discrete event systems, and 48 carefully selected papers covering all areas of discrete event theory and the most important applications domains. Topics include automata theory and supervisory control (12); Petri net based models for discrete event systems, and their control synthesis (11); (max, +) and timed automata models (9); applications papers related to scheduling, failure detection, and implementation of supervisory controllers (7); formal description of PLCs (6); and finally, stochastic models of discrete event systems (3).
Phase transitions in disordered systems and related dynamical phenomena are a topic of intrinsically high interest in theoretical and experimental physics. This book presents a unified view, adopting concepts from each of the disjoint fields of disordered systems and nonlinear dynamics. Special attention is paid to the glass transition, from both experimental and theoretical viewpoints, to modern concepts of pattern formation, and to the application of the concepts of dynamical systems for understanding equilibrium and nonequilibrium properties of fluids and solids. The content is accessible to graduate students, but will also be of benefit to specialists, since the presentation extends as far as the topics of ongoing research work. |
![]() ![]() You may like...
Operator Theory, Functional Analysis and…
M. Amelia Bastos, Luis Castro, …
Hardcover
R5,226
Discovery Miles 52 260
Concrete Operators, Spectral Theory…
Manuel Cepedello Boiso, Hakan Hedenmalm, …
Hardcover
Predictive Analytics in Cloud, Fog, and…
Hiren Kumar Thakkar, Chinmaya Kumar Dehury, …
Hardcover
R4,927
Discovery Miles 49 270
|