![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Reference & Interdisciplinary > Communication studies > Information theory > Cybernetics & systems theory
This book contains a selected collection of papers providing an overview of the state of the art in the study of dynamical systems. A broad range of aspects of dynamical systems is covered, focusing on discrete and continuous dynamical systems, bifurcation theory, celestial mechanics, delay difference and differential equations, Hamiltonian systems and also the classic challenges in planar vector fields. Particular attention has been posed on real-world applications of dynamical systems, showing the constant interaction of the field with other sciences. The authors have made a special effort in placing the reader at the frontiers of current knowledge in the discipline. In this way, recent advances and new trends become available. The papers are based on talks given at the International Conference Dynamical Systems: 100 years after Poincare held at the University of Oviedo, Gijon (Spain), on September 3-7, 2012. Recent advances and new trends have been discussed during the meeting, including applications to a wide range of disciplines such as Biology, Chemistry, Physics and Economics, among others. The memory of Poincare, who laid the foundations of dynamical systems, provided the backdrop for the discussion of the new challenges 100 years after his death.
'Rana el Kaliouby's vision for how technology should work in parallel with empathy is bold, inspired and hopeful' Arianna Huffington, founder and CEO of Thrive Global 'This lucid and captivating book by a renowned pioneer of emotion-AI tackles one of the most pressing issues of our time: How can we ensure a future where this technology empowers rather than surveils and manipulates us?' Max Tegmark, professor of physics at Massachusetts Institute of Technology and author of Life 3.0 We are entering an empathy crisis. Most of our communication is conveyed through non-verbal cues - facial expressions, tone of voice, body language - nuances that are completely lost when we interact through our smartphones and other technology. The result is a digital universe that's emotion-blind - a society lacking in empathy. Rana el Kaliouby discovered this when she left Cairo, a newly-married, Muslim woman, to take up her place at Cambridge University to study computer science. Many thousands of miles from home, she began to develop systems to help her better connect with her family. She started to pioneer the new field of Emotional Intelligence (EI). She now runs her company, Affectiva (the industry-leader in this emerging field) that builds EI into our technology and develops systems that understand humans the way we understand one another. In a captivating memoir, Girl Decoded chronicles el Kaliouby's mission to humanise technology and what she learns about humanity along the way.
The idea for this book originated during the workshop "Model order reduction, coupled problems and optimization" held at the Lorentz Center in Leiden from S- tember 19-23, 2005. During one of the discussion sessions, it became clear that a book describing the state of the art in model order reduction, starting from the very basics and containing an overview of all relevant techniques, would be of great use for students, young researchers starting in the ?eld, and experienced researchers. The observation that most of the theory on model order reduction is scattered over many good papers, making it dif?cult to ?nd a good starting point, was supported by most of the participants. Moreover, most of the speakers at the workshop were willing to contribute to the book that is now in front of you. The goal of this book, as de?ned during the discussion sessions at the workshop, is three-fold: ?rst, it should describe the basics of model order reduction. Second, both general and more specialized model order reduction techniques for linear and nonlinear systems should be covered, including the use of several related numerical techniques. Third, the use of model order reduction techniques in practical appli- tions and current research aspects should be discussed. We have organized the book according to these goals. In Part I, the rationale behind model order reduction is explained, and an overview of the most common methods is described.
This volume contains a selection of the most important papers in the theory of chaotic attractors over the past 40 years. It is dedicated to James Yorke - a pioneer in the field and a recipient of the 2003 Japan prize - on the occasion of his 60th birthday. The volume includes an introduction to Yorke's work and an overview of key developments in the theory of chaotic attractors.
This book contains contributions by some of the leading researchers in the area of grey systems theory and applications. All the papers included in this volume are selected from the contributions physically presented at the 2009 IEEE International Conference on Grey Systems and Intelligent Services, November 11 - 12, 2009, Nanjing, Jiangsu, People's Republic of China. This event was jointly sponsored by IEEE Systems, Man, and Cybernetics Society, Natural Science Foundation of China, and Grey Systems Society of China. Additionally, Nanjing University of Aeronautics and Astronautics also invested heavily in this event with its direct and indirect financial and administrative supports. The conference aimed at bringing together all scholars and experts in the fields of grey systems and intelligent services from around the world to share their cutting edge research results, exchange innovative ideas, promote mutual understanding, and seek potential opportunities for collaboration. The conference program c- mittee received 1054 full paper submissions from 16 countries and geographical regions. Nine hundred sixty four papers were submitted for regular sessions and 90 papers were tunnelled directly for special topic sessions. All the submitted papers, including those aiming at special topic sessions, were rigorously reviewed by at least 3 reviewers. Based on the reviewers' reports, 251 papers were accepted for oral presentations, while 99 accepted for poster presentations. In other words, only slightly over 33% of the submitted papers were accepted by this conference. The rate of acceptance was lower than one third of the total submissions.
This special volume is dedicated to Boris M. Mordukhovich, on the occasion of his 60th birthday, and aims to celebrate his fundamental contributionsto variational analysis, generalizeddifferentiationand their applications.A main exampleof these contributions is Boris' recent opus magnus "Variational Analysis and Generalized Differentiation"(vols. I and II) [2,3]. A detailed explanationand careful description of Boris' research and achievements can be found in [1]. Boris' active work and jovial attitude have constantly inspired researchers of several generations, with whom he has generously shared his knowledgeand ent- siasm, along with his well-known warmth and human touch. Variationalanalysis is a rapidlygrowing?eld within pure and applied mathem- ics, with numerous applications to optimization, control theory, economics, en- neering, and other disciplines. Each of the 12 chapters of this volume is a carefully reviewed paper in the ?eld of variational analysis and related topics. Many chapters of this volume were presented at the International Symposium on Variational Analysis and Optimization (ISVAO), held in the Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan, from November 28 to November 30, 2008. The symposium was organized in honour of Boris' 60thbirthday.It broughttogetherBorisandotherresearchersto discusssta- of-the-art results in variational analysis and its applications, with emphasis on op- mization and control. We thank the organizers and participants of the symposium, who made the symposium a highly bene?cial and enjoyable event. We are also grateful to all the authors of this special volume, who have taken the opportunityto celebrate Boris' birthdayand his decadesof contributionsto the area.
This book is devoted to a new branch of experimental design theory called simulation experimental design. There are many books devoted either to the theory of experimental design or to system simulation techniques, but in this book an approach to combine both fields is developed. Especially the mathematical theory of such universal variance reduction techniques as splitting and Russian Roulette is explored. The book contains a number of results on regression design theory related to nonlinear problems, the E-optimum criterion and designs which minimize bias. Audience: This volume will be of value to readers interested in systems simulation, applied statistics and numerical methods with basic knowledge of applied statistics and linear algebra.
One of the most important tasks faced by decision-makers in
business and government is that of selection. Selection problems
are challenging in that they require the balancing of multiple,
often conflicting, criteria. In recent years, a number of
interesting decision aids have become available to assist in such
decisions.
This monograph contains an in-depth analysis of the dynamics given by a linear Hamiltonian system of general dimension with nonautonomous bounded and uniformly continuous coefficients, without other initial assumptions on time-recurrence. Particular attention is given to the oscillation properties of the solutions as well as to a spectral theory appropriate for such systems. The book contains extensions of results which are well known when the coefficients are autonomous or periodic, as well as in the nonautonomous two-dimensional case. However, a substantial part of the theory presented here is new even in those much simpler situations. The authors make systematic use of basic facts concerning Lagrange planes and symplectic matrices, and apply some fundamental methods of topological dynamics and ergodic theory. Among the tools used in the analysis, which include Lyapunov exponents, Weyl matrices, exponential dichotomy, and weak disconjugacy, a fundamental role is played by the rotation number for linear Hamiltonian systems of general dimension. The properties of all these objects form the basis for the study of several themes concerning linear-quadratic control problems, including the linear regulator property, the Kalman-Bucy filter, the infinite-horizon optimization problem, the nonautonomous version of the Yakubovich Frequency Theorem, and dissipativity in the Willems sense. The book will be useful for graduate students and researchers interested in nonautonomous differential equations; dynamical systems and ergodic theory; spectral theory of differential operators; and control theory.
This book joins the multitude of Control Systems books now available, but is neither a textbook nor a monograph. Rather it may be described as a resource book or survey of the elements/essentials of feedback control systems. The material included is a result of my development, over a period of several years, of summaries written to supplement a number of standard textbooks for undergraduate and early post-graduate courses. Those notes, plus more work than I care right now to contemplate, are intended to be helpful both to students and to professional engineers. Too often, standard textbooks seem to overlook some of the engineering realities of (roughly) how much things cost or how big of hardware for computer programs for simple algorithms are, sensing and actuation, of special systems such as PLCs and PID controllers, of the engineering of real systems from coverage of SISO theories, and of the special characteristics of computers, their programming, and their potential interactions into systems. In particular, students with specializations other than control systems are not being exposed to the breadth of the considerations needed in control systems engineering, perhaps because it is assumed that they are always to be part of a multicourse sequence taken by specialists. The lectures given to introduce at least some of these aspects were more effective when supported by written material: hence, the need for my notes which preceded this book.
Control of Linear Parameter Varying Systems compiles state-of-the-art contributions on novel analytical and computational methods for addressing system identification, model reduction, performance analysis and feedback control design and addresses address theoretical developments, novel computational approaches and illustrative applications to various fields. Part I discusses modeling and system identification of linear parameter varying systems, Part II covers the importance of analysis and control design when working with linear parameter varying systems (LPVS) , Finally, Part III presents an applications based approach to linear parameter varying systems, including modeling of a turbocharged diesel engines, Multivariable control of wind turbines, modeling and control of aircraft engines, control of an autonomous underwater vehicles and analysis and synthesis of re-entry vehicles.
In wntmg this monograph my aim has been to present a "geometric" approach to the structural synthesis of multivariable control systems that are linear, time-invariant and of finite dynamic order. The book is ad dressed to graduate students specializing in control, to engineering scientists involved in control systems research and development, and to mathemati cians interested in systems control theory. The label "geometric" in the title is applied for several reasons. First and obviously, the setting is linear state space and the mathematics chiefly linear algebra in abstract (geometric) style. The basic ideas are the familiar system concepts of controllability and observability, thought of as geometric prop erties of distinguished state subspaces. Indeed, the geometry was first brought in out of revulsion against the orgy of matrix manipulation which linear control theory mainly consisted of, around fifteen years ago. But secondly and of greater interest, the geometric setting rather quickly sug gested new methods of attacking synthesis which have proved to be intuitive and economical; they are also easily reduced to matrix arithmetic as soon as you want to compute. The essence of the "geometric" approach is just this: instead of looking directly for a feedback law (say u = Fx) which would solve your synthesis problem if a solution exists, first characterize solvability as a verifiable property of some constructible state subspace, say Y. Then, if all is well, you may calculate F from Y quite easily."
A large-scale system is composed of several interconnected subsystems. For such a system it is often desired to have some form of decentralization in the control structure, since it is typically not realistic to assume that all output measurements can be transmitted to every local control station. Problems of this kind can appear in electric power systems, communication networks, large space structures, robotic systems, economic systems, and traffic networks, to name only a few. Typical large-scale control systems have several local control stations which observe only local outputs and control only local inputs. All controllers are involved, however, in the control operation of the overall system. The focus of this book is on the efficient control of interconnected systems, and it presents systems analysis and controller synthesis techniques using a variety of methods. A systematic study of multi-input, multi-output systems is carried out and illustrative examples are given to clarify the ideas.
With collective behaviors playing a fundamental role in many scientific and technical disciplines, the book, after an overview on the background to systemics, introduces the concept of COLLECTIVE BEING as a Multiple System established by processes of emergence and self-organization of the same agents simultaneously or dynamically interacting in different ways. The general principles underlying this approach are grounded on the theoretical role of the observer. This extended view allows to model in a more suitable way complex systems, such as in physics, biology and economics. The Dynamical Usage of Models (DYSAM) is the related modelling methodology. This innovating approach is applied to artificial and natural systems equipped with cognitive systems, such as autonomous robots and social systems. The authors discuss in two different chapters both traditional (i.e. based on dynamical systems and dissipative structures) and non-traditional (i.e. based on theory of phase transitions, Synergetics and connectionistic models) models of emergence. The book also introduces an innovative methodology for detecting the establishment of processes of emergence based on changes of ergodicity. After a theoretical introduction of the concepts, the authors discuss the application to social systems and cognitive systems. Applications to social systems deal with issues such as representing and distinguishing growth and development, sustainable development, ethics and its crucial role to induce and maintain emergence of social systems, virtual systems, knowledge management and organizational learning. Applications to cognitive systems deal with approaches going beyond computationalism, theories ofconsciousness and embodied cognition. Two conclusive appendices on (1) Some systemic properties and (2) Some questions and answers about Systemics, help the reader to have a synthesized view of the book.
"Takagi-Sugeno Fuzzy Systems Non-fragile H-infinity Filtering"
investigates the problem of non-fragile H-infinity filter design
for Takagi-Sugeno (T-S) fuzzy systems. Given a T-S fuzzy system,
the objective of this book is to design an H-infinity filter with
the gain variations such that the filtering error system guarantees
a prescribed H-infinity performance level. Furthermore, it
demonstrates that the solution of non-fragile H-infinity filter
design problem can be obtained by solving a set of linear matrix
inequalities (LMIs).
Welcome to the proceedings of the Seventh International Conference of the UK Systems Society being held at York University, United Kingdom from July 7th to 10th, 2002. It is a pleasure to be able to share with you this collection ofpapers that have been contributed by systems thinkers from around the world. As with previous UKSS conferences, the aim ofthis conference is to encourage debate and promote development of pertinent issues in systems theory and practice. In current times where the focus has moved from 'information' to 'knowledge' and where 'knowledge management', of everyday speak, it seemed fitting to 'knowledge assets' and so on, have become part offer a conference title of'Systems Theory and Practice in the Knowledge Age'. In keeping with another tradition of previous conferences, the UKSS Conference 2002 Committee decided to compile a collection ofdelegates' papers before the event as a platform from which to launch discussions in York. Ideas presented in the following papers will, undoubtedly, be developed during the dialogue generated at the conference and new papers will emerge. In his abstract for his plenary at this conference, Professor Peter Checkland throws down the gauntlet to systems thinking and its relevance in the knowledge age with the following statement: "30 Years In The Systems Movement: Disappointments I Have Known and Hopes/or the Future Springing from a lunchtime conversation at an American University, the Systems Movement is now nearly 50 years old.
Over the past several years, cooperative control and optimization has un questionably been established as one of the most important areas of research in the military sciences. Even so, cooperative control and optimization tran scends the military in its scope -having become quite relevant to a broad class of systems with many exciting, commercial, applications. One reason for all the excitement is that research has been so incredibly diverse -spanning many scientific and engineering disciplines. This latest volume in the Cooperative Systems book series clearly illustrates this trend towards diversity and creative thought. And no wonder, cooperative systems are among the hardest systems control science has endeavored to study, hence creative approaches to model ing, analysis, and synthesis are a must The definition of cooperation itself is a slippery issue. As you will see in this and previous volumes, cooperation has been cast into many different roles and therefore has assumed many diverse meanings. Perhaps the most we can say which unites these disparate concepts is that cooperation (1) requires more than one entity, (2) the entities must have some dynamic behavior that influences the decision space, (3) the entities share at least one common objective, and (4) entities are able to share information about themselves and their environment. Optimization and control have long been active fields of research in engi neering."
In the last decade there have been rapid developments in the field of computer-based learning environments. A whole new generation of computer-based learning environments has appeared, requiring new approaches to design and development. One main feature of current systems is that they distinguish different knowledge bases that are assumed to be necessary to support learning processes. Current computer-based learning environments often require explicit representations of large bodies of knowledge, including knowledge of instruction. This book focuses on instructional models as explicit, potentially implementable representations of knowledge concerning one or more aspects of instruction. The book has three parts, relating to different aspects of the knowledge that should be made explicit in instructional models: knowledge of instructional planning, knowledge of instructional strategies, and knowledge of instructional control. The book is based on a NATO Advanced Research Workshop held at the University of Twente, The Netherlands in July 1991.
This edited monograph provides a comprehensive and in-depth analysis of sliding mode control, focusing on event-triggered implementation. The technique allows to prefix the steady-state bounds of the system, and this is independent of any boundary disturbances. The idea of event-triggered SMC is developed for both single input / single output and multi-input / multi-output linear systems. Moreover, the reader learns how to apply this method to nonlinear systems. The book primarily addresses research experts in the field of sliding mode control, but the book may also be beneficial for graduate students.
This book discusses stochastic dynamics of power systems and the related analytical methodology. It summarizes and categorizes the stochastic elements of power systems and develops a framework for research on stochastic dynamics of power systems. It also establishes a research model for stochastic dynamics of power systems and theoretically proves stochastic stability in power systems. Further, in addition to demonstrating the stochastic oscillation mechanism in power systems, it also proposes methods for quantitative analysis and stochastic optimum control in the field of stochastic dynamic security in power systems. This book is a valuable resource for researchers, scholars and engineers in the field of electrics.
Information Systems and Data Compression presents a uniform approach and methodology for designing intelligent information systems. A framework for information concepts is introduced for various types of information systems such as communication systems, information storage systems and systems for simplifying structured information. The book introduces several new concepts and presents a novel interpretation of a wide range of topics in communications, information storage, and information compression. Numerous illustrations for designing information systems for compression of digital data and images are used throughout the book.
Non-linear stochastic systems are at the center of many engineering disciplines and progress in theoretical research had led to a better understanding of non-linear phenomena. This book provides information on new fundamental results and their applications which are beginning to appear across the entire spectrum of mechanics. The outstanding points of these proceedings are Coherent compendium of the current state of modelling and analysis of non-linear stochastic systems from engineering, applied mathematics and physics point of view. Subject areas include: Multiscale phenomena, stability and bifurcations, control and estimation, computational methods and modelling. For the Engineering and Physics communities, this book will provide first-hand information on recent mathematical developments. The applied mathematics community will benefit from the modelling and information on various possible applications.
Bionics evolved in the 1960s as a framework to pursue the development of artificial systems based on the study of biological systems. Numerous disciplines and technologies, including artificial intelligence and learningdevices, information processing, systems architecture and control, perception, sensory mechanisms, and bioenergetics, contributed to bionics research. This volume is based on a NATO Advanced Research Workshop within the Special Programme on Sensory Systems for Robotic Control, held in Il Ciocco, Italy, in June 1989. A consensus emerged at the workshop, and is reflected in the book, on the value of learning from nature in order to derive guidelines for the design of intelligent machines which operate in unstructured environments. The papers in the book are grouped into seven chapters: vision and dynamic systems, hands and tactile perception, locomotion, intelligent motor control, design technologies, interfacing robots to nervous systems, and robot societies and self-organization.
This book offers a new, theoretical approach to information dynamics, i.e., information processing in complex dynamical systems. The presentation establishes a consistent theoretical framework for the problem of discovering knowledge behind empirical, dynamical data and addresses applications in information processing and coding in dynamical systems. This will be an essential reference for those in neural computing, information theory, nonlinear dynamics and complex systems modeling.
This book focuses on the design of a multi-criteria automated vehicle longitudinal control system as an enhancement of the adaptive cruise control system. It analyses the effects of various parameters on the average traffic speed and the traction force of the vehicles in mixed traffic from a macroscopic point of view, and also demonstrates why research and development in speed control and predictive cruise control is important. The book also summarises the main steps of the system's robust control design, from the modelling to its synthesis, and discusses both the theoretical background and the practical computation method of the control invariant sets. The book presents the analysis and verification of the system both in a simulation environment and under real-world conditions. By including the systematic design of the predictive cruise control using road and traffic information, it shows how optimization criteria can lead to multiobjective solutions, and the advanced optimization and control design methods required. The book focuses on a particular method by which the unfavourable effect of the traffic flow consideration can be reduced. It also includes simulation examples in which the speed design is performed, while the analysis is carried out in simulation and visualization environments. This book is a valuable reference for researchers and control engineers working on traffic control, vehicle control and control theory. It is also of interest to students and academics as it provides an overview of the strong interaction between the traffic flow and an individual vehicle cruising from both a microscopic and a macroscopic point of view. |
You may like...
Quantum Systems in Chemistry and Physics…
Alfonso Hernandez-Laguna, J. Maruani, …
Hardcover
R4,072
Discovery Miles 40 720
Computational Information Geometry - For…
Frank Nielsen, Frank Critchley, …
Hardcover
R5,036
Discovery Miles 50 360
Population Ageing, Migration and Social…
Jose Alvarado, John Creedy
Hardcover
R2,852
Discovery Miles 28 520
C and C++ programming concepts and Data…
P.S. Subramanyam
Hardcover
Modelling, Estimation and Control of…
Alessandro Chiuso, Luigi Fortuna, …
Hardcover
R4,145
Discovery Miles 41 450
Handbook of Model Predictive Control
Sasa V. Rakovic, William S. Levine
Hardcover
R4,363
Discovery Miles 43 630
|