Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Computing & IT > Applications of computing > Databases > Data warehousing
Data science and machine learning-two of the world's hottest fields-are attracting talent from a wide variety of technical, business, and liberal arts disciplines. Python, the world's #1 programming language, is also the most popular language for data science and machine learning. This is the first guide specifically designed to help millions of people with widely diverse backgrounds learn Python so they can use it for data science and machine learning. Leading data science instructor and practitioner Kennedy Behrman first walks through the process of learning to code for the first time with Python and Jupyter notebook, then introduces key libraries every Python data science programmer needs to master. Once you've learned these foundations, Behrman introduces intermediate and applied Python techniques for real-world problem-solving. Throughout, Foundational Python for Data Science presents hands-on exercises, learning assessments, case studies, and more-all created with Colab (Jupyter compatible) notebooks, so you can execute all coding examples interactively without installing or configuring any software.
Data and its technologies now play a large and growing role in humanities research and teaching. This book addresses the needs of humanities scholars who seek deeper expertise in the area of data modeling and representation. The authors, all experts in digital humanities, offer a clear explanation of key technical principles, a grounded discussion of case studies, and an exploration of important theoretical concerns. The book opens with an orientation, giving the reader a history of data modeling in the humanities and a grounding in the technical concepts necessary to understand and engage with the second part of the book. The second part of the book is a wide-ranging exploration of topics central for a deeper understanding of data modeling in digital humanities. Chapters cover data modeling standards and the role they play in shaping digital humanities practice, traditional forms of modeling in the humanities and how they have been transformed by digital approaches, ontologies which seek to anchor meaning in digital humanities resources, and how data models inhabit the other analytical tools used in digital humanities research. It concludes with a glossary chapter that explains specific terms and concepts for data modeling in the digital humanities context. This book is a unique and invaluable resource for teaching and practising data modeling in a digital humanities context.
Organization of data warehouses is a vital, but often neglected, aspect of growing an enterprise. Unlike most books on the subject that focus on either the technical aspects of building data warehouses or on business strategies, this valuable reference synthesizes technological know-how with managerial best practices to show how improved alignment between data warehouse plans and business strategies can lead to successful data warehouse adoption capable of supporting an enterprise's entire infrastructure. Strategic Data Warehousing: Achieving Alignment with Business provides data warehouse developers, business managers, and IT professionals and administrators with an integrated approach to achieving successful and sustainable alignment of data warehouses and business goals. More complete than any other text in the field, this comprehensive reference details the joint roles and responsibilities of the data warehouse and business managers in achieving strategic alignment, business user satisfaction, technical integration, and improved flexibility. Complete with case studies that depict real-world scenarios, the text: Examines the organizational, user, data, and technological factors proven to promote successful data warehousing Includes actionable solutions for achieving strategic alignment Provides a model that readers can apply in aligning their own data warehouse needs and business goals Achieving sustainable alignment between the data warehouse and business strategies is a continuous process. Armed with this valuable reference, readers will be able to gain the solid understanding of the organizational, technical, data, and user factors needed to promote a successful data warehouse adoption and become active partners in leveraging this powerful, but often overlooked, information reso
Data Warehousing for Biomedical Informatics is a step-by-step how-to guide for designing and building an enterprise-wide data warehouse across a biomedical or healthcare institution, using a four-iteration lifecycle and standardized design pattern. It enables you to quickly implement a fully-scalable generic data architecture that supports your organization's clinical, operational, administrative, financial, and research data. By following the guidelines in this book, you will be able to successfully progress through the Alpha, Beta, and Gamma versions, plus fully implement your first production release in about a year. The Alpha version allows you to implement just enough of the basic design pattern to illustrate its core capabilities while loading a small sampling of limited data for demonstration purposes. This provides an easy way for everyone involved to visualize the new warehouse paradigm by actually examining a core subset of the working system. You can finish the Alpha version, also referred to as the proof-of-concept, in as little as 3-4 weeks. The Beta version, which can be completed in about 2-3 months, adds required functionality and much more data. It allows you to get the full warehouse up and running quickly, in order to facilitate longer-term planning, user and support team training, and setup of the operational environment. The Gamma version, which is a fully-functional system-though still lacking data-can be implemented in about 3-4 months. About one year after starting, you will be ready to launch Release 1.0 as a complete and secure data warehouse.
Open Source Data Warehousing and Business Intelligence is an all-in-one reference for developing open source based data warehousing (DW) and business intelligence (BI) solutions that are business-centric, cross-customer viable, cross-functional, cross-technology based, and enterprise-wide. Considering the entire lifecycle of an open source DW & BI implementation, its comprehensive coverage spans from basic concepts all the way through to customization. Highlighting the key differences between open source and vendor DW and BI technologies, the book identifies end-to-end solutions that are scalable, high performance, and stable. It illustrates the practical aspects of implementing and using open source DW and BI technologies to supply you with valuable on-the-project experience that can help you improve implementation and productivity. Emphasizing analysis, design, and programming, the text explains best-fit solutions as well as how to maximize ROI. Coverage includes data warehouse design, real-time processing, data integration, presentation services, and real-time reporting. With a focus on real-world applications, the author devotes an entire section to powerful implementation best practices that can help you build customer confidence while saving valuable time, effort, and resources.
The amount of data being generated, processed, and stored has reached unprecedented levels. Even during the recent economic crisis, there has been no slow down or information recession. Instead, the need to process, move, and store data has only increased. Consequently, IT organizations are looking to do more with what they have while supporting growth along with new services without compromising on cost and service delivery. Cloud and Virtual Data Storage Networking, by savvy IT industry veteran Greg Schulz, looks at converging IT resources and management technologies for facilitating efficient and effective delivery of information services, including enabling of Information Factories. Regardless of your experience level, Schulz guides you through the various technologies and techniques available for achieving efficient information services delivery. Coverage includes:
This much-needed reference brings together technology themes and topics that are converging in IT and data center environments for enabling effective information services, in a practical and hype-free manner. When it comes to IT clouds and virtualization, you must look before you leap. This book will help you address the questions of when, where, with what, and how to leverage cloud, virtual, and data storage networking as part of your IT infrastructure. A video of Greg Schulz discussing his new book is featured on the CRC Press YouTube channel. Visit Slideshare to view a slide presentation based on the book.
With the aim of simplifying relational database modeling, Database Modeling Step-by-Step presents the standard approach to database normalization and then adds its own approach, which is a more simplistic, intuitive way to building relational database models. Going from basics to contemporary topics, the book opens with relational data modeling and ends with BigData database modeling following a road map of the evolution in relational modeling and including brief introductions to data warehousing and BigData modeling. A break-down of the elements of a model explains what makes up a relational data model. This is followed by a comparison between standard normalization and a more simplistic intuitive approach to data modeling that a beginner can follow and understand. A brief chapter explains how to use the database programming language SQL (Structured Query Language), which reads from and writes to a relational database. SQL is fundamental to data modeling because it helps in understanding how the model is used. In addition to the relational model, the last three chapters cover important modern world topics including denormalization that leads into data warehouses and BigData database modeling. The book explains how there is not much to logical data modeling in BigData databases because as they are often schema-less, which means that BigData databases do not have schemas embedded into the database itself, they have no metadata and thus not much of a logical data model. Online bonus chapters include a case study that covers relational data modeling and are available at the author's web site: www.oracletroubleshooter.com/datamodeling.html
This book seeks to promote the exploitation of data science in healthcare systems. The focus is on advancing the automated analytical methods used to extract new knowledge from data for healthcare applications. To do so, the book draws on several interrelated disciplines, including machine learning, big data analytics, statistics, pattern recognition, computer vision, and Semantic Web technologies, and focuses on their direct application to healthcare. Building on three tutorial-like chapters on data science in healthcare, the following eleven chapters highlight success stories on the application of data science in healthcare, where data science and artificial intelligence technologies have proven to be very promising. This book is primarily intended for data scientists involved in the healthcare or medical sector. By reading this book, they will gain essential insights into the modern data science technologies needed to advance innovation for both healthcare businesses and patients. A basic grasp of data science is recommended in order to fully benefit from this book.
Data and its technologies now play a large and growing role in humanities research and teaching. This book addresses the needs of humanities scholars who seek deeper expertise in the area of data modeling and representation. The authors, all experts in digital humanities, offer a clear explanation of key technical principles, a grounded discussion of case studies, and an exploration of important theoretical concerns. The book opens with an orientation, giving the reader a history of data modeling in the humanities and a grounding in the technical concepts necessary to understand and engage with the second part of the book. The second part of the book is a wide-ranging exploration of topics central for a deeper understanding of data modeling in digital humanities. Chapters cover data modeling standards and the role they play in shaping digital humanities practice, traditional forms of modeling in the humanities and how they have been transformed by digital approaches, ontologies which seek to anchor meaning in digital humanities resources, and how data models inhabit the other analytical tools used in digital humanities research. It concludes with a glossary chapter that explains specific terms and concepts for data modeling in the digital humanities context. This book is a unique and invaluable resource for teaching and practising data modeling in a digital humanities context.
Manage and Automate Data Analysis with Pandas in Python Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple data sets. Pandas for Everyone, 2nd Edition, brings together practical knowledge and insight for solving real problems with Pandas, even if you're new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world data science problems such as using regularization to prevent data overfitting, or when to use unsupervised machine learning methods to find the underlying structure in a data set. New features to the second edition include: Extended coverage of plotting and the seaborn data visualization library Expanded examples and resources Updated Python 3.9 code and packages coverage, including statsmodels and scikit-learn libraries Online bonus material on geopandas, Dask, and creating interactive graphics with Altair Chen gives you a jumpstart on using Pandas with a realistic data set and covers combining data sets, handling missing data, and structuring data sets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes. Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability and introduces you to the wider Python data analysis ecosystem. Work with DataFrames and Series, and import or export data Create plots with matplotlib, seaborn, and pandas Combine data sets and handle missing data Reshape, tidy, and clean data sets so they're easier to work with Convert data types and manipulate text strings Apply functions to scale data manipulations Aggregate, transform, and filter large data sets with groupby Leverage Pandas' advanced date and time capabilities Fit linear models using statsmodels and scikit-learn libraries Use generalized linear modeling to fit models with different response variables Compare multiple models to select the "best" one Regularize to overcome overfitting and improve performance Use clustering in unsupervised machine learning
How to build and maintain strong data organizations--the Dummies way Data Governance For Dummies offers an accessible first step for decision makers into understanding how data governance works and how to apply it to an organization in a way that improves results and doesn't disrupt. Prep your organization to handle the data explosion (if you know, you know) and learn how to manage this valuable asset. Take full control of your organization's data with all the info and how-tos you need. This book walks you through making accurate data readily available and maintaining it in a secure environment. It serves as your step-by-step guide to extracting every ounce of value from your data. Identify the impact and value of data in your business Design governance programs that fit your organization Discover and adopt tools that measure performance and need Address data needs and build a more data-centric business culture This is the perfect handbook for professionals in the world of data analysis and business intelligence, plus the people who interact with data on a daily basis. And, as always, Dummies explains things in terms anyone can understand, making it easy to learn everything you need to know.
Image and video signals require large transmission bandwidth and storage, leading to high costs. The data must be compressed without a loss or with a small loss of quality. Thus, efficient image and video compression algorithms play a significant role in the storage and transmission of data. Image and Video Compression: Fundamentals, Techniques, and Applications explains the major techniques for image and video compression and demonstrates their practical implementation using MATLAB (R) programs. Designed for students, researchers, and practicing engineers, the book presents both basic principles and real practical applications. In an accessible way, the book covers basic schemes for image and video compression, including lossless techniques and wavelet- and vector quantization-based image compression and digital video compression. The MATLAB programs enable readers to gain hands-on experience with the techniques. The authors provide quality metrics used to evaluate the performance of the compression algorithms. They also introduce the modern technique of compressed sensing, which retains the most important part of the signal while it is being sensed.
This book examines how cloud-based services challenge the current application of antitrust and privacy laws in the EU and the US. The author looks at the elements of data centers, the way information is organized, and how antitrust, competition and privacy laws in the US and the EU regulate cloud-based services and their market practices. She discusses how platform interoperability can be a driver of incremental innovation and the consequences of not promoting radical innovation. She evaluates applications of predictive analysis based on big data as well as deriving privacy-invasive conduct. She looks at the way antitrust and privacy laws approach consumer protection and how lawmakers can reach more balanced outcomes by understanding the technical background of cloud-based services.
Market Basket Analysis (MBA) provides the ability to continually monitor the affinities of a business and can help an organization achieve a key competitive advantage. Time Variant data enables data warehouses to directly associate events in the past with the participants in each individual event. In the past however, the use of these powerful tools in tandem led to performance degradation and resulted in unactionable and even damaging information. Data Warehouse Designs: Achieving ROI with Market Basket Analysis and Time Variance presents an innovative, soup-to-nuts approach that successfully combines what was previously incompatible, without degradation, and uses the relational architecture already in place. Built around two main chapters, Market Basket Solution Definition and Time Variant Solution Definition, it provides a tangible how-to design that can be used to facilitate MBA within the context of a data warehouse. Presents a solution for creating home-grown MBA data marts Includes database design solutions in the context of Oracle, DB2, SQL Server, and Teradata relational database management systems (RDBMS) Explains how to extract, transform, and load data used in MBA and Time Variant solutions The book uses standard RDBMS platforms, proven database structures, standard SQL and hardware, and software and practices already accepted and used in the data warehousing community to fill the gaps left by most conceptual discussions of MBA. It employs a form and language intended for a data warehousing audience to explain the practicality of how data is delivered, stored, and viewed. Offering a comprehensive explanation of the applications that provide, store, and use MBA data, Data Warehouse Designs provides you with the language and concepts needed to require and receive information that is relevant and actionable.
A practical guide to making good decisions in a world of missing data In the era of big data, it is easy to imagine that we have all the information we need to make good decisions. But in fact the data we have are never complete, and may be only the tip of the iceberg. Just as much of the universe is composed of dark matter, invisible to us but nonetheless present, the universe of information is full of dark data that we overlook at our peril. In Dark Data, data expert David Hand takes us on a fascinating and enlightening journey into the world of the data we don't see. Dark Data explores the many ways in which we can be blind to missing data and how that can lead us to conclusions and actions that are mistaken, dangerous, or even disastrous. Examining a wealth of real-life examples, from the Challenger shuttle explosion to complex financial frauds, Hand gives us a practical taxonomy of the types of dark data that exist and the situations in which they can arise, so that we can learn to recognize and control for them. In doing so, he teaches us not only to be alert to the problems presented by the things we don't know, but also shows how dark data can be used to our advantage, leading to greater understanding and better decisions. Today, we all make decisions using data. Dark Data shows us all how to reduce the risk of making bad ones.
This contributed volume discusses essential topics and the fundamentals for Big Data Emergency Management and primarily focusses on the application of Big Data for Emergency Management. It walks the reader through the state of the art, in different facets of the big disaster data field. This includes many elements that are important for these technologies to have real-world impact. This book brings together different computational techniques from: machine learning, communication network analysis, natural language processing, knowledge graphs, data mining, and information visualization, aiming at methods that are typically used for processing big emergency data. This book also provides authoritative insights and highlights valuable lessons by distinguished authors, who are leaders in this field. Emergencies are severe, large-scale, non-routine events that disrupt the normal functioning of a community or a society, causing widespread and overwhelming losses and impacts. Emergency Management is the process of planning and taking actions to minimize the social and physical impact of emergencies and reduces the community's vulnerability to the consequences of emergencies. Information exchange before, during and after the disaster periods can greatly reduce the losses caused by the emergency. This allows people to make better use of the available resources, such as relief materials and medical supplies. It also provides a channel through which reports on casualties and losses in each affected area, can be delivered expeditiously. Big Data-Driven Emergency Management refers to applying advanced data collection and analysis technologies to achieve more effective and responsive decision-making during emergencies. Researchers, engineers and computer scientists working in Big Data Emergency Management, who need to deal with large and complex sets of data will want to purchase this book. Advanced-level students interested in data-driven emergency/crisis/disaster management will also want to purchase this book as a study guide.
This book constitutes the refereed proceedings of the 27th International Symposium on String Processing and Information Retrieval, SPIRE 2021, held in Lille, France, in October 2021.*The 14 full papers and 4 short papers presented together with 2 invited papers in this volume were carefully reviewed and selected from 30 submissions. They cover topics such as: data structures; algorithms; information retrieval; compression; combinatorics on words; and computational biology. *The symposium was held virtually.
A practical guide to making good decisions in a world of missing data In the era of big data, it is easy to imagine that we have all the information we need to make good decisions. But in fact the data we have are never complete, and may be only the tip of the iceberg. Just as much of the universe is composed of dark matter, invisible to us but nonetheless present, the universe of information is full of dark data that we overlook at our peril. In Dark Data, data expert David Hand takes us on a fascinating and enlightening journey into the world of the data we don't see. Dark Data explores the many ways in which we can be blind to missing data and how that can lead us to conclusions and actions that are mistaken, dangerous, or even disastrous. Examining a wealth of real-life examples, from the Challenger shuttle explosion to complex financial frauds, Hand gives us a practical taxonomy of the types of dark data that exist and the situations in which they can arise, so that we can learn to recognize and control for them. In doing so, he teaches us not only to be alert to the problems presented by the things we don't know, but also shows how dark data can be used to our advantage, leading to greater understanding and better decisions. Today, we all make decisions using data. Dark Data shows us all how to reduce the risk of making bad ones.
This 2 volume-set of IFIP AICT 583 and 584 constitutes the refereed proceedings of the 16th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations, AIAI 2020, held in Neos Marmaras, Greece, in June 2020.* The 70 full papers and 5 short papers presented were carefully reviewed and selected from 149 submissions. They cover a broad range of topics related to technical, legal, and ethical aspects of artificial intelligence systems and their applications and are organized in the following sections: Part I: classification; clustering - unsupervised learning -analytics; image processing; learning algorithms; neural network modeling; object tracking - object detection systems; ontologies - AI; and sentiment analysis - recommender systems. Part II: AI ethics - law; AI constraints; deep learning - LSTM; fuzzy algebra - fuzzy systems; machine learning; medical - health systems; and natural language. *The conference was held virtually due to the COVID-19 pandemic.
This 2 volume-set of IFIP AICT 583 and 584 constitutes the refereed proceedings of the 16th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations, AIAI 2020, held in Neos Marmaras, Greece, in June 2020.* The 70 full papers and 5 short papers presented were carefully reviewed and selected from 149 submissions. They cover a broad range of topics related to technical, legal, and ethical aspects of artificial intelligence systems and their applications and are organized in the following sections: Part I: classification; clustering - unsupervised learning -analytics; image processing; learning algorithms; neural network modeling; object tracking - object detection systems; ontologies - AI; and sentiment analysis - recommender systems. Part II: AI ethics - law; AI constraints; deep learning - LSTM; fuzzy algebra - fuzzy systems; machine learning; medical - health systems; and natural language. *The conference was held virtually due to the COVID-19 pandemic.
A practical guide to data mining using SQL and Excel Data Analysis Using SQL and Excel, 2nd Edition shows you how to leverage the two most popular tools for data query and analysis SQL and Excel to perform sophisticated data analysis without the need for complex and expensive data mining tools. Written by a leading expert on business data mining, this book shows you how to extract useful business information from relational databases. You'll learn the fundamental techniques before moving into the "where" and "why" of each analysis, and then learn how to design and perform these analyses using SQL and Excel. Examples include SQL and Excel code, and the appendix shows how non-standard constructs are implemented in other major databases, including Oracle and IBM DB2/UDB. The companion website includes datasets and Excel spreadsheets, and the book provides hints, warnings, and technical asides to help you every step of the way. Data Analysis Using SQL and Excel, 2nd Edition shows you how to perform a wide range of sophisticated analyses using these simple tools, sparing you the significant expense of proprietary data mining tools like SAS. * Understand core analytic techniques that work with SQL and Excel * Ensure your analytic approach gets you the results you need * Design and perform your analysis using SQL and Excel Data Analysis Using SQL and Excel, 2nd Edition shows you how to best use the tools you already know to achieve expert results.
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. Develop a custom, agile data warehousing and business intelligence architectureEmpower your users and drive better decision making across your enterprise with detailed instructions and best practices from an expert developer and trainer. The Data Warehouse Mentor: Practical Data Warehouse and Business Intelligence Insights shows how to plan, design, construct, and administer an integrated end-to-end DW/BI solution. Learn how to choose appropriate components, build an enterprise data model, configure data marts and data warehouses, establish data flow, and mitigate risk. Change management, data governance, and security are also covered in this comprehensive guide. Understand the components of BI and data warehouse systems Establish project goals and implement an effective deployment plan Build accurate logical and physical enterprise data models Gain insight into your company's transactions with data mining Input, cleanse, and normalize data using ETL (Extract, Transform, and Load) techniques Use structured input files to define data requirements Employ top-down, bottom-up, and hybrid design methodologies Handle security and optimize performance using data governance tools Robert Laberge is the founder of several Internet ventures and a principle consultant for the IBM Industry Models and Assets Lab, which has a focus on data warehousing and business intelligence solutions.
This double volumes LNCS 11229-11230 constitutes the refereed proceedings of the Confederated International Conferences: Cooperative Information Systems, CoopIS 2018, Ontologies, Databases, and Applications of Semantics, ODBASE 2018, and Cloud and Trusted Computing, C&TC, held as part of OTM 2018 in October 2018 in Valletta, Malta. The 64 full papers presented together with 22 short papers were carefully reviewed and selected from 173 submissions. The OTM program every year covers data and Web semantics, distributed objects, Web services, databases, informationsystems, enterprise workflow and collaboration, ubiquity, interoperability, mobility, grid and high-performance computing.
This two-volume set LNCS 11196 and LNCS 11197 constitutes the refereed proceedings of the 7th International Conference on Digital Heritage, EuroMed 2018, held in Nicosia, Cyprus, in October/November 2018. The 21 full papers, 47 project papers, and 29 short papers presented were carefully reviewed and selected from 537 submissions. The papers are organized in topical sections on 3D Digitalization, Reconstruction, Modeling, and HBIM; Innovative Technologies in Digital Cultural Heritage; Digital Cultural Heritage -Smart Technologies; The New Era of Museums and Exhibitions; Digital Cultural Heritage Infrastructure; Non Destructive Techniques in Cultural Heritage Conservation; E-Humanities; Reconstructing the Past; Visualization, VR and AR Methods and Applications; Digital Applications for Materials Preservation in Cultural Heritage; and Digital Cultural Heritage Learning and Experiences. |
You may like...
Big Data Management, Technologies, and…
Wen-Chen Hu, Naima Kaabouch
Hardcover
R4,663
Discovery Miles 46 630
E-Discovery Tools and Applications in…
Egbert de Smet, Sangeeta Dhamdhere
Hardcover
R5,151
Discovery Miles 51 510
Digitisation of Culture: Namibian and…
Dharm Singh Jat, Jurgen Sieck, …
Hardcover
R2,831
Discovery Miles 28 310
Artificial Intelligence Applications and…
Ilias Maglogiannis, Lazaros Iliadis, …
Hardcover
R2,875
Discovery Miles 28 750
Intro to Python for Computer Science and…
Paul Deitel
Paperback
Innovations in XML Applications and…
Jose Carlos Ramalho, Alberto Simoes, …
Hardcover
R5,123
Discovery Miles 51 230
|