![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > Euclidean geometry
This introductory book is organized around a collection of simple experiments which the reader can perform at home or in a classroom setting. Methods for physically exploring the intrinsic geometry of commonplace curved objects (such as bowls, balls and watermelons) are described. The concepts of Gaussian curvature, parallel transport, and geodesics are treated.
This text provides a wide-ranging introduction to convex sets and functions, suitable for final-year undergraduates and also graduate students. Demanding only a modest knowledge of analysis and linear algebra, it discusses such diverse topics as number theory, classical extremum problems, combinatorial geometry, linear programming, game theory, polytopes, bodies of constant width, the gamma function, minimax approximation, and the theory of linear, classical, and matrix inequalities.
Transformation Geometry: An Introduction to Symmetry offers a modern approach to Euclidean Geometry. This study of the automorphism groups of the plane and space gives the classical concrete examples that serve as a meaningful preparation for the standard undergraduate course in abstract algebra. The detailed development of the isometries of the plane is based on only the most elementary geometry and is appropriate for graduate courses for secondary teachers.
An introduction to the variational methods used to formulate and solve mathematical and physical problems, allowing the reader an insight into the systematic use of elementary (partial) convexity of differentiable functions in Euclidian space. By helping students directly characterize the solutions for many minimization problems, the text serves as a prelude to the field theory for sufficiency, laying as it does the groundwork for further explorations in mathematics, physics, mechanical and electrical engineering, as well as computer science.
The Latin "Version II," till now attributed to Adelard of Bath, is edited here for the first time. It was the most influential Euclid text in the Latin West in the 12th and 13th centuries. As the large number of manuscripts and the numerous quotations in other scientific and philosophical texts show, it was far better known than the three Euclid translations made from the Arabic in the 12th century (Adelard of Bath, version I; Hermann of Carinthia; Gerard of Cremona). Version II became the basis of later reworkings, in which the enunciations were taken over, but new proofs supplied; the most important text of this kind is the redaction made by Campanus in the late 1250s, which became the standard Latin "Euclid" in the later Middle Ages. The introduction deals with the questions of when and by whom version II was written. Since Marshall Clagett's fundamental article (1953) it has been generally accepted that version II is one of three Euclid texts attributable to Adelard of Bath. But a comparison of the text of version II with those of versions I and III yields little or no reason to assume that Adelard was the author of version II. Version II must have been written later than version I and before version III; its author was acquainted with Euclid texts of the Boethius tradition and with two of those transmitted from Arabic, version I (almost certainly by Adelard) and the version by Hermann of Carinthia.
Emanating from the theory of C*-algebras and actions of tori theoren, the problems discussed here are outgrowths of random walk problems on lattices. An AGL (d, Z)-invariant (which is a partially ordered commutative algebra) is obtained for lattice polytopes (compact convex polytopes in Euclidean space whose vertices lie in Zd), and certain algebraic properties of the algebra are related to geometric properties of the polytope. There are also strong connections with convex analysis, Choquet theory, and reflection groups. This book serves as both an introduction to and a research monograph on the many interconnections between these topics, that arise out of questions of the following type: Let f be a (Laurent) polynomial in several real variables, and let P be a (Laurent) polynomial with only positive coefficients; decide under what circumstances there exists an integer n such that Pnf itself also has only positive coefficients. It is intended to reach and be of interest to a general mathematical audience as well as specialists in the areas mentioned.
The Fifty-Nine Icosahedra was originally published in 1938 as No. 6 of "University of Toronto Studies (Mathematical Series)." Of the four authors, only Coxeter and myself are still alive, and we two are the authors of the whole text of the book, in which any signs of immaturity may perhaps be regarded leniently on noting that both of us were still in our twenties when it was written. N either of the others was a professional mathematician. Flather died about 1950, and Petrie, tragically, in a road accident in 1972. Petrie's part in the book consisted in the extremely difficult drawings which consti tute the left half of each of the plates (the much simpler ones on the right being mine). A brief biographical note on Petrie will be found on p. 32 of Coxeter's Regular Polytopes (3rd. ed., Dover, New York, 1973); and it may be added that he was still a schoolboy when he discovered the regular skew polygons that are named after him, and are the occasion for the note on him in Coxeter's book. (Coxeter also was a schoolboy when some of the results for which he will be most remembered were obtained; he and Petrie were schoolboy friends and used to work together on polyhedron and polytope theory. ) Flather's part in the book consisted in making a very beautiful set of miniature models of all the fifty-nine figures. These are still in existence, and in excellent preservation."
The AMS now makes available this succinct and quite elegant research monograph written by Fields Medalist and eminent researcher, Laurent Lafforgue. The material is an outgrowth of Lafforgue's lectures and seminar at the Centre de Recherches Mathematiques (University of Montreal, QC, Canada), where he held the 2001-2002 Aisenstadt Chair. In the book, he addresses an important recurrent theme of modern mathematics: the various compactifications of moduli spaces, which have a large number of applications.This book treats the case of thin Schubert varieties, which are natural subvarieties of Grassmannians. He was led to these questions by a particular case linked to his work on the Langlands program. In this monograph, he develops the theory in a more systematic way, which exhibits strong similarities with the case of moduli of stable curves. Prerequisites are minimal and include basic algebraic geometry, and standard facts about Grassmann varieties, their Plucker embeddings, and toric varieties. The book is suitable for advanced graduate students and research mathematicians interested in the classification of moduli spaces.
The marriage of analytic power to geometric intuition drives many of today's mathematical advances, yet books that build the connection from an elementary level remain scarce. This engaging introduction to geometric measure theory bridges analysis and geometry, taking readers from basic theory to some of the most celebrated results in modern analysis. The theory of sets of finite perimeter provides a simple and effective framework. Topics covered include existence, regularity, analysis of singularities, characterization and symmetry results for minimizers in geometric variational problems, starting from the basics about Hausdorff measures in Euclidean spaces and ending with complete proofs of the regularity of area-minimizing hypersurfaces up to singular sets of codimension 8. Explanatory pictures, detailed proofs, exercises and remarks providing heuristic motivation and summarizing difficult arguments make this graduate-level textbook suitable for self-study and also a useful reference for researchers. Readers require only undergraduate analysis and basic measure theory.
This book provides a comprehensive, in-depth overview of elementary mathematics as explored in Mathematical Olympiads around the world. It expands on topics usually encountered in high school and could even be used as preparation for a first-semester undergraduate course. This second volume covers Plane Geometry, Trigonometry, Space Geometry, Vectors in the Plane, Solids and much more. As part of a collection, the book differs from other publications in this field by not being a mere selection of questions or a set of tips and tricks that applies to specific problems. It starts from the most basic theoretical principles, without being either too general or too axiomatic. Examples and problems are discussed only if they are helpful as applications of the theory. Propositions are proved in detail and subsequently applied to Olympic problems or to other problems at the Olympic level. The book also explores some of the hardest problems presented at National and International Mathematics Olympiads, as well as many essential theorems related to the content. An extensive Appendix offering hints on or full solutions for all difficult problems rounds out the book.
This book is based on a capstone course that the author taught to upper division undergraduate students with the goal to explain and visualize the connections between different areas of mathematics and the way different subject matters flow from one another. In teaching his readers a variety of problem solving techniques as well, the author succeeds in enhancing the readers' hands on knowledge of mathematics and provides glimpses into the world of research and discovery. The connections between different techniques and areas of mathematics are emphasized throughout and constitute one of the most important lessons this book attempts to impart. This book is interesting and accessible to anyone with a basic knowledge of high school mathematics and a curiosity about research mathematics. The author is a professor at the University of Missouri and has maintained a keen interest in teaching at different levels since his undergraduate days at the University of Chicago. He has run numerous summer programs in mathematics for local high school students and undergraduate students at his university.The author gets much of his research inspiration from his teaching activities and looks forward to exploring this wonderful and rewarding symbiosis for years to come.
The book describes how curvature measures can be introduced for certain classes of sets with singularities in Euclidean spaces. Its focus lies on sets with positive reach and some extensions, which include the classical polyconvex sets and piecewise smooth submanifolds as special cases. The measures under consideration form a complete system of certain Euclidean invariants. Techniques of geometric measure theory, in particular, rectifiable currents are applied, and some important integral-geometric formulas are derived. Moreover, an approach to curvatures for a class of fractals is presented, which uses approximation by the rescaled curvature measures of small neighborhoods. The book collects results published during the last few decades in a nearly comprehensive way.
Originally published in 1915, this book contains an English translation of a reconstructed version of Euclid's study of divisions of geometric figures, which survives only partially and in only one Arabic manuscript. Archibald also gives an introduction to the text, its transmission in an Arabic version and its possible connection with Fibonacci's Practica geometriae. This book will be of value to anyone with an interest in Greek mathematics, the history of science or the reconstruction of ancient texts.
After studying both classics and mathematics at the University of Cambridge, Sir Thomas Little Heath (1861-1940) used his time away from his job as a civil servant to publish many works on the subject of ancient mathematics, both popular and academic. First published in 1926 as the second edition of a 1908 original, this book contains the first volume of his three-volume English translation of the thirteen books of Euclid's Elements, covering Books One and Two. This detailed text will be of value to anyone with an interest in Greek geometry and the history of mathematics.
After studying both classics and mathematics at the University of Cambridge, Sir Thomas Little Heath (1861-1940) used his time away from his job as a civil servant to publish many works on the subject of ancient mathematics, both popular and academic. First published in 1926 as the second edition of a 1908 original, this book contains the second volume of his three-volume English translation of the thirteen books of Euclid's Elements, covering Books Three to Nine. This detailed text will be of value to anyone with an interest in Greek geometry and the history of mathematics.
After studying both classics and mathematics at the University of Cambridge, Sir Thomas Little Heath (1861-1940) used his time away from his job as a civil servant to publish many works on the subject of ancient mathematics, both popular and academic. First published in 1926 as the second edition of a 1908 original, this book contains the third and final volume of his three-volume English translation of the thirteen books of Euclid's Elements, covering Books Ten to Thirteen. This detailed text will be of value to anyone with an interest in Greek geometry and the history of mathematics.
Trigonometry has always been an underappreciated branch of mathematics. It has a reputation as a dry and difficult subject, a glorified form of geometry complicated by tedious computation. In this book, Eli Maor draws on his remarkable talents as a guide to the world of numbers to dispel that view. Rejecting the usual arid descriptions of sine, cosine, and their trigonometric relatives, he brings the subject to life in a compelling blend of history, biography, and mathematics. He presents both a survey of the main elements of trigonometry and a unique account of its vital contribution to science and social development. Woven together in a tapestry of entertaining stories, scientific curiosities, and educational insights, the book more than lives up to the title "Trigonometric Delights." Maor, whose previous books have demystified the concept of infinity and the unusual number "e," begins by examining the "proto-trigonometry" of the Egyptian pyramid builders. He shows how Greek astronomers developed the first true trigonometry. He traces the slow emergence of modern, analytical trigonometry, recounting its colorful origins in Renaissance Europe's quest for more accurate artillery, more precise clocks, and more pleasing musical instruments. Along the way, we see trigonometry at work in, for example, the struggle of the famous mapmaker Gerardus Mercator to represent the curved earth on a flat sheet of paper; we see how M. C. Escher used geometric progressions in his art; and we learn how the toy Spirograph uses epicycles and hypocycles. Maor also sketches the lives of some of the intriguing figures who have shaped four thousand years of trigonometric history. We meet, for instance, the Renaissance scholar Regiomontanus, who is rumored to have been poisoned for insulting a colleague, and Maria Agnesi, an eighteenth-century Italian genius who gave up mathematics to work with the poor--but not before she investigated a special curve that, due to mistranslation, bears the unfortunate name "the witch of Agnesi." The book is richly illustrated, including rare prints from the author's own collection. "Trigonometric Delights" will change forever our view of a once dreaded subject.
This book, first published in 2004, is a genuine introduction to the geometry of lines and conics in the Euclidean plane. Lines and circles provide the starting point, with the classical invariants of general conics introduced at an early stage, yielding a broad subdivision into types, a prelude to the congruence classification. A recurring theme is the way in which lines intersect conics. From single lines one proceeds to parallel pencils, leading to midpoint loci, axes and asymptotic directions. Likewise, intersections with general pencils of lines lead to the central concepts of tangent, normal, pole and polar. The treatment is example based and self contained, assuming only a basic grounding in linear algebra. With numerous illustrations and several hundred worked examples and exercises, this book is ideal for use with undergraduate courses in mathematics, or for postgraduates in the engineering and physical sciences.
This text brings together the many strands of contemporary research in quasicrystal geometry and weaves them into a coherent whole. The author describes the historical and scientific context of this work, and carefully explains what has been proved and what is conjectured. This, together with a bibliography of over 250 references, provides a background for further study. The discovery in 1984 of crystals with forbidden symmetry posed fascinating and challenging problems in many fields of mathematics, as well as in the solid state sciences. Increasingly, mathematicians and physicists are becoming intrigued by the quasicrystal phenomenon, and the result has been an exponential growth in the literature on the geometry of diffraction patterns, the behaviour of the Fibonacci and other nonperiodic sequences, and the fascinating properties of the Penrose tilings and their many relatives. In this monograph, Marjorie Senechal gives us insight into what happened when established ideas had to be re-examined, modified or overturned.
The differential geometry of curves and surfaces in Euclidean space has fascinated mathematicians since the time of Newton. Here the authors take a novel approach by casting the theory into a new light, that of singularity theory. The second edition of this successful textbook has been thoroughly revised throughout and includes a multitude of new exercises and examples. A new final chapter has been added that covers recently developed techniques in the classification of functions of several variables, a subject central to many applications of singularity theory. Also in this second edition are new sections on the Morse lemma and the classification of plane curve singularities. The only prerequisites for students to follow this textbook are a familiarity with linear algebra and advanced calculus. Thus it will be invaluable for anyone who would like an introduction to the modern theories of catastrophes and singularities.
This is the definitive presentation of the history, development and philosophical significance of non-Euclidean geometry as well as of the rigorous foundations for it and for elementary Euclidean geometry, essentially according to Hilbert. Appropriate for liberal arts students, prospective high school teachers, math. majors, and even bright high school students. The first eight chapters are mostly accessible to any educated reader; the last two chapters and the two appendices contain more advanced material, such as the classification of motions, hyperbolic trigonometry, hyperbolic constructions, classification of Hilbert planes and an introduction to Riemannian geometry.
This classic text explores the geometry of the triangle and the circle, concentrating on extensions of Euclidean theory, and examining in detail many relatively recent theorems. Several hundred theorems and corollaries are formulated and proved completely; numerous others remain unproved, to be used by students as exercises. 1929 edition.
This volume offers an expanded version of lectures given at the Courant Institute on the theory of Sobolev spaces on Riemannian manifolds. 'Several surprising phenomena appear when studying Sobolev spaces on manifolds,' according to the author. 'Questions that are elementary for Euclidean space become challenging and give rise to sophisticated mathematics, where the geometry of the manifold plays a central role.' The volume is organized into nine chapters. Chapter 1 offers a brief introduction to differential and Riemannian geometry. Chapter 2 deals with the general theory of Sobolev spaces for compact manifolds. Chapter 3 presents the general theory of Sobolev spaces for complete, noncompact manifolds. Best constants problems for compact manifolds are discussed in Chapters 4 and 5.Chapter 6 presents special types of Sobolev inequalities under constraints. Best constants problems for complete noncompact manifolds are discussed in Chapter 7. Chapter 8 deals with Euclidean-type Sobolev inequalities. And Chapter 9 discusses the influence of symmetries on Sobolev embeddings. An appendix offers brief notes on the case of manifolds with boundaries. This topic is a field undergoing great development at this time. However, several important questions remain open. So a substantial part of the book is devoted to the concept of best constants, which appeared to be crucial for solving limiting cases of some classes of PDEs. The volume is highly self-contained. No familiarity is assumed with differentiable manifolds and Riemannian geometry, making the book accessible to a broad audience of readers, including graduate students and researchers.
Sacred Geometry exists all around us in the natural world, from the unfurling of a rose bud to the pattern of a tortoise shell, the sub-atomic to the galactic. A pure expression of number and form, it is the language of creation and navigates the unseen dimensions beyond our three-dimensional reality. Since its discovery, humans have found many ways - stone circles, mandalas, labyrinths, temples- to call upon this universal law as a way of raising consciousness and communicating with a divine source. By becoming aware of the dots and lines that build the world around you, Sacred Geometry will teach you how to bring this mystical knowledge into your daily practice. |
![]() ![]() You may like...
|