![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > Euclidean geometry
Trigonometry has always been an underappreciated branch of mathematics. It has a reputation as a dry and difficult subject, a glorified form of geometry complicated by tedious computation. In this book, Eli Maor draws on his remarkable talents as a guide to the world of numbers to dispel that view. Rejecting the usual arid descriptions of sine, cosine, and their trigonometric relatives, he brings the subject to life in a compelling blend of history, biography, and mathematics. He presents both a survey of the main elements of trigonometry and a unique account of its vital contribution to science and social development. Woven together in a tapestry of entertaining stories, scientific curiosities, and educational insights, the book more than lives up to the title "Trigonometric Delights." Maor, whose previous books have demystified the concept of infinity and the unusual number "e," begins by examining the "proto-trigonometry" of the Egyptian pyramid builders. He shows how Greek astronomers developed the first true trigonometry. He traces the slow emergence of modern, analytical trigonometry, recounting its colorful origins in Renaissance Europe's quest for more accurate artillery, more precise clocks, and more pleasing musical instruments. Along the way, we see trigonometry at work in, for example, the struggle of the famous mapmaker Gerardus Mercator to represent the curved earth on a flat sheet of paper; we see how M. C. Escher used geometric progressions in his art; and we learn how the toy Spirograph uses epicycles and hypocycles. Maor also sketches the lives of some of the intriguing figures who have shaped four thousand years of trigonometric history. We meet, for instance, the Renaissance scholar Regiomontanus, who is rumored to have been poisoned for insulting a colleague, and Maria Agnesi, an eighteenth-century Italian genius who gave up mathematics to work with the poor--but not before she investigated a special curve that, due to mistranslation, bears the unfortunate name "the witch of Agnesi." The book is richly illustrated, including rare prints from the author's own collection. "Trigonometric Delights" will change forever our view of a once dreaded subject.
This text is a careful introduction to geometry. While developing geometry, the book also emphasizes the links between geometry and other branches of pure and applied mathematics.
The differential geometry of curves and surfaces in Euclidean space has fascinated mathematicians since the time of Newton. Here the authors take a novel approach by casting the theory into a new light, that of singularity theory. The second edition of this successful textbook has been thoroughly revised throughout and includes a multitude of new exercises and examples. A new final chapter has been added that covers recently developed techniques in the classification of functions of several variables, a subject central to many applications of singularity theory. Also in this second edition are new sections on the Morse lemma and the classification of plane curve singularities. The only prerequisites for students to follow this textbook are a familiarity with linear algebra and advanced calculus. Thus it will be invaluable for anyone who would like an introduction to the modern theories of catastrophes and singularities.
This volume offers an expanded version of lectures given at the Courant Institute on the theory of Sobolev spaces on Riemannian manifolds. 'Several surprising phenomena appear when studying Sobolev spaces on manifolds,' according to the author. 'Questions that are elementary for Euclidean space become challenging and give rise to sophisticated mathematics, where the geometry of the manifold plays a central role.' The volume is organized into nine chapters. Chapter 1 offers a brief introduction to differential and Riemannian geometry. Chapter 2 deals with the general theory of Sobolev spaces for compact manifolds. Chapter 3 presents the general theory of Sobolev spaces for complete, noncompact manifolds. Best constants problems for compact manifolds are discussed in Chapters 4 and 5.Chapter 6 presents special types of Sobolev inequalities under constraints. Best constants problems for complete noncompact manifolds are discussed in Chapter 7. Chapter 8 deals with Euclidean-type Sobolev inequalities. And Chapter 9 discusses the influence of symmetries on Sobolev embeddings. An appendix offers brief notes on the case of manifolds with boundaries. This topic is a field undergoing great development at this time. However, several important questions remain open. So a substantial part of the book is devoted to the concept of best constants, which appeared to be crucial for solving limiting cases of some classes of PDEs. The volume is highly self-contained. No familiarity is assumed with differentiable manifolds and Riemannian geometry, making the book accessible to a broad audience of readers, including graduate students and researchers.
Twentieth-century developments in logic and mathematics have led many people to view Euclid's proofs as inherently informal, especially due to the use of diagrams in proofs. In "Euclid and His Twentieth-Century Rivals," Nathaniel Miller discusses the history of diagrams in Euclidean Geometry, develops a formal system for working with them, and concludes that they can indeed be used rigorously. Miller also introduces a diagrammatic computer proof system, based on this formal system. This volume will be of interest to mathematicians, computer scientists, and anyone interested in the use of diagrams in geometry.
This book provides an introduction to Riemannian geometry, the geometry of curved spaces, for use in a graduate course. Requiring only an understanding of differentiable manifolds, the author covers the introductory ideas of Riemannian geometry followed by a selection of more specialized topics. Also featured are Notes and Exercises for each chapter, to develop and enrich the reader's appreciation of the subject. This second edition, first published in 2006, has a clearer treatment of many topics than the first edition, with new proofs of some theorems and a new chapter on the Riemannian geometry of surfaces. The main themes here are the effect of the curvature on the usual notions of classical Euclidean geometry, and the new notions and ideas motivated by curvature itself. Completely new themes created by curvature include the classical Rauch comparison theorem and its consequences in geometry and topology, and the interaction of microscopic behavior of the geometry with the macroscopic structure of the space.
Easy-to-follow descriptions of how all the known regular polyhedra and some of the stellated polyhedra may be constructed, carefully illustrated with drawings and photographs.
The differential geometry of curves and surfaces in Euclidean space has fascinated mathematicians since the time of Newton. Here the authors take a novel approach by casting the theory into a new light, that of singularity theory. The second edition of this successful textbook has been thoroughly revised throughout and includes a multitude of new exercises and examples. A new final chapter has been added that covers recently developed techniques in the classification of functions of several variables, a subject central to many applications of singularity theory. Also in this second edition are new sections on the Morse lemma and the classification of plane curve singularities. The only prerequisites for students to follow this textbook are a familiarity with linear algebra and advanced calculus. Thus it will be invaluable for anyone who would like an introduction to the modern theories of catastrophes and singularities.
The aim of this book is to provide a complete synthetic exposition of plane isometries, similarities and inversions to readers who are interested in studying, teaching, and using this material.The topics developed in this book can provide new proofs and solutions to many results and problems of classical geometry, which are presented with different proofs in the literature. Their applications are numerous and some, such as the Steiner Chains and Point, are useful to engineers.The book contains many good examples, important applications and numerous exercises of various level and difficulty, which are classified in the three groups of: general exercises, geometrical constructions, and geometrical loci. Some lengthy exercises or groups of related exercises can be viewed as projects. On the basis of the above, this book, besides Classical Geometry, is an important addition to Mathematics Education.
The author presents three distinct but related branches of science in this book: digital geometry, mathematical morphology, and discrete optimization. They are united by a common mindset as well as by the many applications where they are useful. In addition to being useful, each of these relatively new branches of science is also intellectually challenging.The book contains a systematic study of inverses of mappings between ordered sets, and so offers a uniquely helpful organization in the approach to several phenomena related to duality.To prepare the ground for discrete convexity, there are chapters on convexity in real vector spaces in anticipation of the many challenging problems coming up in digital geometry. To prepare for the study of new topologies introduced to serve in discrete spaces, there is also a chapter on classical topology.The book is intended for general readers with a modest background in mathematics and for advanced undergraduate students as well as beginning graduate students.
Local structures, like differentiable manifolds, fibre bundles, vector bundles and foliations, can be obtained by gluing together a family of suitable 'elementary spaces', by means of partial homeomorphisms that fix the gluing conditions and form a sort of 'intrinsic atlas', instead of the more usual system of charts living in an external framework.An 'intrinsic manifold' is defined here as such an atlas, in a suitable category of elementary spaces: open euclidean spaces, or trivial bundles, or trivial vector bundles, and so on.This uniform approach allows us to move from one basis to another: for instance, the elementary tangent bundle of an open Euclidean space is automatically extended to the tangent bundle of any differentiable manifold. The same holds for tensor calculus.Technically, the goal of this book is to treat these structures as 'symmetric enriched categories' over a suitable basis, generally an ordered category of partial mappings.This approach to gluing structures is related to Ehresmann's one, based on inductive pseudogroups and inductive categories. A second source was the theory of enriched categories and Lawvere's unusual view of interesting mathematical structures as categories enriched over a suitable basis.
Euclid's Elements is the most famous mathematical work of classical antiquity, and has had a profound influence on the development of modern Mathematics and Physics. This volume contains the definitive Ancient Greek text of J.L. Heiberg (1883), together with an English translation. For ease of use, the Greek text and the corresponding English text are on facing pages. Moreover, the figures are drawn with both Greek and English symbols. Finally, a helpful Greek/English lexicon explaining Ancient Greek mathematical jargon is appended. Volume I contains Books 1-4, and covers the fundamentals of straight-line and circular geometry, the fundamentals of geometric algebra, and rectilinear figures inscribed in and circumscribed about circles. THIS EDITION IS OBSOLETE. SEE PROJECTS 1400539 OR 1354389 FOR THE LATEST EDITION.
This classic text explores the geometry of the triangle and the circle, concentrating on extensions of Euclidean theory, and examining in detail many relatively recent theorems. Several hundred theorems and corollaries are formulated and proved completely; numerous others remain unproved, to be used by students as exercises. 1929 edition.
This text for advanced undergraduates and graduate students examines problems concerning convex sets in real Euclidean spaces of two or three dimensions. It illustrates the different ways in which convexity can enter into the formulation as the solution to different problems in these spaces. Problems in Euclidean Space features four chapters that develop an increasingly dominant influence of convexity. In the first chapter, convexity plays a minor role; the second chapter considers problems originally stated in a wider context that can be reduced to problems concerning convex sets. In the third chapter, the problems are defined strictly for convex sets and not for more general sets, and the final chapter discusses properties of subclasses of the class of convex sets.
Designed for a first year graduate course in Mechanics, this text brings together never before collected works on linear vector spaces, on which the author is a world renowned authority. It is primarily concerned with finite dimensional real Euclidean spaces, with Cartesian tensors viewed as linear transformations of such a space into itself, and with applications of these notions, especially in mechanics. The geometric content of the theory and the distinction between matrices and tensors are emphasized, and absolute- and component- notation are both employed. Problems and solutions are included.
The aim of this book is to provide a complete synthetic exposition of plane isometries, similarities and inversions to readers who are interested in studying, teaching, and using this material.The topics developed in this book can provide new proofs and solutions to many results and problems of classical geometry, which are presented with different proofs in the literature. Their applications are numerous and some, such as the Steiner Chains and Point, are useful to engineers.The book contains many good examples, important applications and numerous exercises of various level and difficulty, which are classified in the three groups of: general exercises, geometrical constructions, and geometrical loci. Some lengthy exercises or groups of related exercises can be viewed as projects. On the basis of the above, this book, besides Classical Geometry, is an important addition to Mathematics Education.
Based on undergraduate teaching to students in computer science, economics and mathematics at Aarhus University, this is an elementary introduction to convex sets and convex functions with emphasis on concrete computations and examples.Starting from linear inequalities and Fourier-Motzkin elimination, the theory is developed by introducing polyhedra, the double description method and the simplex algorithm, closed convex subsets, convex functions of one and several variables ending with a chapter on convex optimization with the Karush-Kuhn-Tucker conditions, duality and an interior point algorithm. Study Guide here
The aim of the present book is very simply stated; it is to discuss -- and to some extent to explore -- the Weyl-Dirac theory in connection with classical electromagnetism and cosmology. The study of our universe in recent years has become one of the most interesting and important subjects. Current cosmology considers a large number of various subjects from elementary particles to the large scale-structure of the universe. In order to explain this variety of phenomena, which occur between the Planck time and tens of billions of years, one makes use of methods stemming from different physical theories: elementary particle physics, quantum mechanics, thermodynamics, statistical physics, celestial mechanics, etc. It is, however, generally accepted to express those approaches in terms of the general theory of relativity, which is based on Riemann's geometry. In this book, it is shown that some unexplained cosmological and electrodynamic phenomena may be treated and understood in the geometrically based framework of Weyl and Dirac. The book is intended for physicists, astrophysicists, cosmologists and mathematicians who are familiar with the foundations of Einstein's general theory of relativity.
This is meant as a guide to give access to the tenth book for those who may have lost faith in the commentaries by Thomas Heath, but who shrink from the long wanderings through the Greek text. |
You may like...
Mathematical Methods on Optimization in…
M. Pursula, Jarko Niittymaki
Hardcover
R4,146
Discovery Miles 41 460
International Contracting: Contract…
Arjan Van Weele, John van der Puil
Hardcover
R4,567
Discovery Miles 45 670
Hydraulic fracturing in the Karoo…
Jan Glazewski, Surina Esterhuyse
Paperback
R822
Discovery Miles 8 220
Geomechanics and Fluidodynamics - With…
Victor N. Nikolaevskiy
Hardcover
R4,208
Discovery Miles 42 080
|