![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Astronomy, space & time > General
This book is a small but practical summary of how one can and should learn science. The author argues that science cannot be taught but has to be learnt. Based on historical examples he shows that practicing science means putting one's intellect into the understanding of simple questions like what, why, how and when events around you happen. The reader understands that the search for the cause and effect relationship of so called normal happenings is a very provocative experience and learning science leads one to it. This is underpinned by looking at everyday experiences and how they can help any lay-person learn science. The author also explains the methodology of science and discusses an integrated approach to science communication. Finally he elaborates on the influence and role of science in society. The book addresses interested general readers, teachers and science communicators.
Im Original 1827 und 1828 gehaltene Vorlesungen.
This book presents the proceedings of the 2nd Karl Schwarzschild Meeting on Gravitational Physics, focused on the general theme of black holes, gravity and information.Specialists in the field of black hole physics and rising young researchers present the latest findings on the broad topic of black holes, gravity, and information, highlighting its applications to astrophysics, cosmology, particle physics, and strongly correlated systems.
Maintaining its appealing style and presentation, the Yearbook of Astronomy 2020 contains comprehensive jargon-free monthly sky notes and an authoritative set of sky charts to enable backyard astronomers and sky gazers everywhere to plan their viewing of the year's eclipses, comets, meteor showers and minor planets as well as detailing the phases of the Moon and visibility and locations of the planets throughout the year. To supplement all this is a variety of entertaining and informative articles, a feature for which the Yearbook of Astronomy is known. Presenting the reader with information on a wide range of topics, the articles for the 2020 edition include, among others, 200 Years of the Royal Astronomical Society; The Naming of Stars; Astronomical Sketching; Dark Matter and Galaxies; Eclipsing Binaries; The First Known Black Hole; and A Perspective on the Aboriginal View of the World. The Yearbook of Astronomy made its first appearance way back in 1962, shortly after the dawning of the Space Age. Now well into its sixth decade of production, the Yearbook is rapidly heading for its Diamond Jubilee edition in 2022. It continues to be essential reading for anyone lured and fascinated by the magic of astronomy and who has a desire to extend their knowledge of the Universe and the wonders it plays host to. The Yearbook of Astronomy is indeed an inspiration to amateur and professional astronomers alike, and warrants a place on the bookshelf of all sky watchers and stargazers.
Fascinating, engaging and extremely visual, FOUNDATIONS OF ASTRONOMY, 14th Edition, is renowned for its current coverage, reader-friendly presentation and detailed--yet clear--explanations. The authors' goals are to help you use Astronomy to understand science, and use science to answer two fundamental questions: What are we? And how do we know? Available with WebAssign, the powerful digital solution that enriches the teaching and learning experience. Complete with practice opportunities, a wealth of supplemental resources and immediate feedback, you'll be set up to succeed.
This book summarizes the research advances in star identification that the author's team has made over the past 10 years, systematically introducing the principles of star identification, general methods, key techniques and practicable algorithms. It also offers examples of hardware implementation and performance evaluation for the star identification algorithms. Star identification is the key step for celestial navigation and greatly improves the performance of star sensors, and as such the book include the fundamentals of star sensors and celestial navigation, the processing of the star catalog and star images, star identification using modified triangle algorithms, star identification using star patterns and using neural networks, rapid star tracking using star matching between adjacent frames, as well as implementation hardware and using performance tests for star identification. It is not only valuable as a reference book for star sensor designers and researchers working in pattern recognition and other related research fields, but also as teaching resource for senior postgraduate and graduate students majoring in information processing, computer science, artificial intelligence, aeronautics and astronautics, automation and instrumentation. Dr. Guangjun Zhang is a professor at the School of Instrumentation Science and Opto-electronics Engineering, Beihang University, China and also the Vice President of Beihang University, China
This thesis explores the possibility of searching for new effects of dark matter that are linear in g, an approach that offers enormous advantages over conventional schemes, since the interaction constant g is very small, g<<1. Further, the thesis employs an investigation of linear effects to derive new limits on certain interactions of dark matter with ordinary matter that improve on previous limits by up to 15 orders of magnitude. The first-ever limits on several other interactions are also derived. Astrophysical observations indicate that there is five times more dark matter-an 'invisible' form of matter, the identity and properties of which still remain shrouded in mystery-in the Universe than the ordinary 'visible' matter that makes up stars, planets, dust and interstellar gases. Conventional schemes for the direct detection of dark matter involve processes (such as collisions with, absorption by or inter-conversion with ordinary matter) that are either quartic (g4) or quadratic (g2) in an underlying interaction constant g.
Here is an accurate and readable translation of a seminal article by Henri Poincare that is a classic in the study of dynamical systems popularly called chaos theory. In an effort to understand the stability of orbits in the solar system, Poincare applied a Hamiltonian formulation to the equations of planetary motion and studied these differential equations in the limited case of three bodies to arrive at properties of the equations' solutions, such as orbital resonances and horseshoe orbits. Poincare wrote for professional mathematicians and astronomers interested in celestial mechanics and differential equations. Contemporary historians of math or science and researchers in dynamical systems and planetary motion with an interest in the origin or history of their field will find his work fascinating.
This textbook provides students with a solid introduction to the techniques of approximation commonly used in data analysis across physics and astronomy. The choice of methods included is based on their usefulness and educational value, their applicability to a broad range of problems and their utility in highlighting key mathematical concepts. Modern astronomy reveals an evolving universe rife with transient sources, mostly discovered - few predicted - in multi-wavelength observations. Our window of observations now includes electromagnetic radiation, gravitational waves and neutrinos. For the practicing astronomer, these are highly interdisciplinary developments that pose a novel challenge to be well-versed in astroparticle physics and data-analysis. The book is organized to be largely self-contained, starting from basic concepts and techniques in the formulation of problems and methods of approximation commonly used in computation and numerical analysis. This includes root finding, integration, signal detection algorithms involving the Fourier transform and examples of numerical integration of ordinary differential equations and some illustrative aspects of modern computational implementation. Some of the topics highlighted introduce the reader to selected problems with comments on numerical methods and implementation on modern platforms including CPU-GPU computing. Developed from lectures on mathematical physics in astronomy to advanced undergraduate and beginning graduate students, this book will be a valuable guide for students and a useful reference for practicing researchers. To aid understanding, exercises are included at the end of each chapter. Furthermore, some of the exercises are tailored to introduce modern symbolic computation.
This book consists of invited reviews written by world-renowned experts on the subject of the outskirts of galaxies, an upcoming field which has been understudied so far. These regions are faint and hard to observe, yet hide a tremendous amount of information on the origin and early evolution of galaxies. They thus allow astronomers to address some of the most topical problems, such as gaseous and satellite accretion, radial migration, and merging. The book is published in conjunction with the celebration of the end of the four-year DAGAL project, an EU-funded initial training network, and with a major international conference on the topic held in March 2016 in Toledo. It thus reflects not only the views of the experts, but also the scientific discussions and progress achieved during the project and the meeting. The reviews in the book describe the most modern observations of the outer regions of our own Galaxy, and of galaxies in the local and high-redshift Universe. They tackle disks, haloes, streams, and accretion as observed through deep imaging and spectroscopy, and guide the reader through the various formation and evolution scenarios for galaxies. The reviews focus on the major open questions in the field, and explore how they can be tackled in the future. This book provides a unique entry point into the field for graduate students and non-specialists, and serves as a reference work for researchers in this exciting new field.
This book provides an introduction to the physics of interstellar gas in the Galaxy. It deals with the diffuse interstellar medium which supplies a complex environment for exploring the neutral gas content of a galaxy like the Milky Way and the techniques necessary for studying this non-stellar component. After an initial exposition of the phases of the interstellar medium and the role of gas in a spiral galaxy, the authors discuss the transition from atomic to molecular gas. They then consider basic radiative transfer and molecular spectroscopy with particular emphasis on the molecules useful for studying low-density molecular gas. Observational techniques for investigating the gas and the dust component of the diffuse interstellar medium throughout the electromagnetic spectrum are explored emphasizing results from the recent Herschel and Planck missions. A brief exposition on dust in the diffuse interstellar medium is followed by a discussion of molecular clouds in general and high-latitude molecular clouds in particular. Ways of calibrating CO observations with the molecular hydrogen content of a cloud are examined along with the dark molecular gas controversy. High-latitude molecular clouds are considered in detail as vehicles for applying the techniques developed in the book. Given the transient nature of diffuse and translucent molecular clouds, the role of turbulence in the origin and dynamics of these objects is examined in some detail. The book is targeted at graduate students or postdocs who are entering the field of interstellar medium studies.
This book provides the only critical edition and English translation of Mahmud al-Jaghmini's al-Mulakhkhas fi al-hay'a al-basita, the most widely circulated Arabic treatise on Ptolemaic astronomy ever written. Composed in the early 13th century, this introductory textbook played a crucial role in the teaching, dissemination, and institutional instruction of Islamic astronomy well into the 19th century (and beyond). Establishing the base text is a fundamental prerequisite for gaining insights into what was considered an elementary astronomical textbook in Islam and also for understanding the extensive commentary tradition that built upon it. Within this volume, the Mulakhkhas is situated within the broader context of the genre of literature termed 'ilm al-hay'a, which has become the subject of intensive research over the past 25 years. In so doing, it provides a survey of summary accounts of theoretical astronomy of Jaghmini's predecessors, both Ancient and Islamic, which could have served as potential sources for the Mulakhkhas. Jaghmini's dates (which until now remained unsettled) are established, and it is definitively shown that he composed not only the Mulakhkhas but also other scientific treatises, including the popular medical treatise al-Qanunca, during a period that has been deemed one of scientific decline and stagnation in Islamic lands. The book will be of particular interest to scholars engaged in the study of Islamic theoretical astronomy, but is accessible to a general readership interested in learning what constituted an introduction to Ptolemaic astronomy in Islamic lands.
This textbook presents the established sciences of optical, infrared, and radio astronomy as distinct research areas, focusing on the science targets and the constraints that they place on instrumentation in the different domains. It aims to bridge the gap between specialized books and practical texts, presenting the state of the art in different techniques. For each type of astronomy, the discussion proceeds from the orders of magnitude for observable quantities that drive the building of instrumentation and the development of advanced techniques. The specific telescopes and detectors are then presented, together with the techniques used to measure fluxes and spectra. Finally, the instruments and their limits are discussed to assist readers in choice of setup, planning and execution of observations, and data reduction. The volume also includes worked examples and problem sets to improve student understanding; tables and figures in chapters su mmarize the state of the art of instrumentation and techniques.
This textbook presents ultraviolet and X-ray astronomy, gamma-ray astronomy, cosmic ray astronomy, neutrino astronomy, and gravitational wave astronomy as distinct research areas, focusing on the astrophysics targets and the requirements with respect to instrumentation and observation methods. The purpose of the book is to bridge the gap between the reference books and the specialized literature. For each type of astronomy, the discussion proceeds from the orders of magnitude for observable quantities. The physical principles of photon and particle detectors are then addressed, and the specific telescopes and combinations of detectors, presented. Finally the instruments and their limits are discussed with a view to assisting readers in the planning and execution of observations. Astronomical observations with high-energy photons and particles represent the newest additions to multimessenger astronomy and this book will be of value to all with an interest in the field.
A sweeping exploration of the development and far-reaching applications of harmonic analysis such as signal processing, digital music, Fourier optics, radio astronomy, crystallography, medical imaging, spectroscopy, and more. Featuring a wealth of illustrations, examples, and material not found in other harmonic analysis books, this unique monograph skillfully blends together historical narrative with scientific exposition to create a comprehensive yet accessible work. While only an understanding of calculus is required to appreciate it, there are more technical sections that will charm even specialists in harmonic analysis. From undergraduates to professional scientists, engineers, and mathematicians, there is something for everyone here. The second edition of The Evolution of Applied Harmonic Analysis contains a new chapter on atmospheric physics and climate change, making it more relevant for today's audience. Praise for the first edition: "...can be thoroughly recommended to any reader who is curious about the physical world and the intellectual underpinnings that have lead to our expanding understanding of our physical environment and to our halting steps to control it. Everyone who uses instruments that are based on harmonic analysis will benefit from the clear verbal descriptions that are supplied." - R.N. Bracewell, Stanford University "The book under review is a unique and splendid telling of the triumphs of the fast Fourier transform. I can recommend it unconditionally... Elena Prestini... has taken one major mathematical idea, that of Fourier analysis, and chased down and described a half dozen varied areas in which Fourier analysis and the FFT are now in place. Her book is much to be applauded." - Society for Industrial and Applied Mathematics "This is not simply a book about mathematics, or even the history of mathematics; it is a story about how the discipline has been applied (to borrow Fourier's expression) to 'the public good and the explanation of natural phenomena.' ... This book constitutes a significant addition to the library of popular mathematical works, and a valuable resource for students of mathematics." - Mathematical Association of America Reviews
This book focuses on the stellar disk evolution and gas disk turbulence of the most numerous galaxies in the local Universe - the dwarf galaxies. The "outside-in" disk shrinking mode was established for a relatively large sample of dwarf galaxies for the first time, and this is in contrast to the "inside-out" disk growth mode found for spiral galaxies. Double exponential brightness profiles also correspond to double exponential stellar mass profiles for dwarf galaxies, which is again different from most spiral galaxies. The cool gas distribution in dwarf galaxies was probed with the spatial power spectra of hydrogen iodide (HI) gas emission, and provided indirect evidence that inner disks of dwarf galaxies have proportionally more cool gas than outer disks. The finding that no correlation exists between gas power spectral indices and star formation gave important constraints on the relation between turbulence and star formation in dwarf galaxies.
If man's next big step is to live and work in space, then what will everyone do out there that is so different from what we are now doing here on Earth? As the future of space comes into focus it is clear that profit and power are the core elements of the new space economy. This entertaining and informative book looks at human settlement in space as a mainstream business opportunity for investors, entrepreneurs and far-sighted individuals seeking to secure their place in the innovative commercial space sector. Dr. Jack Gregg presents a unique 5-phase development roadmap that shows how space will grow from a frontier economy to a mature integrated market. Written in simple, non-technical language, this book answers such questions as: * What is the new industrial space economy? * What are the challenges and roadblocks on the way to a robust space economy? * How will the rapid growth of the new space economy impact commerce back on Earth? * How can one best invest in profitable space-related enterprises? The Cosmos Economy is for readers who hope to be better equipped and more informed about the new space economy; and Investors, entrepreneurs, and futurists who wants to learn how to take part in the business opportunities of the new high frontier of commercial space.
This book offers an essential compendium of astronomical high-resolution techniques. Recent years have seen considerable developments in such techniques, which are critical to advances in many areas of astronomy. As reflected in the book, these techniques can be divided into direct methods, interferometry, and reconstruction methods, and can be applied to a huge variety of astrophysical systems, ranging from planets, single stars and binaries to active galactic nuclei, providing angular resolution in the micro- to tens of milliarcsecond scales. Written by experts in their fields, the chapters cover adaptive optics, aperture masking imaging, spectra disentangling, interferometry, lucky imaging, Roche tomography, imaging with interferometry, interferometry of AGN, AGN reverberation mapping, Doppler- and magnetic imaging of stellar surfaces, Doppler tomography, eclipse mapping, Stokes imaging, and stellar tomography. This book is intended to enable a next generation of astronomers to apply high-resolution techniques. It informs readers on how to achieve the best angular resolution in the visible and near-infrared regimes from diffraction-limited to micro-arcsecond scales.
This thesis presents studies of the starless core populations of three nearby molecular clouds made as part of the James Clerk Maxwell Telescope Gould Belt Survey. These studies combine observations made using the SCUBA-2 submillimetre camera with data from several other instruments, including the Herschel Space Observatory, to identify and characterise starless cores in the Ophiuchus, Taurus and Cepheus molecular clouds. The temperatures, masses and stability against collapse of the starless cores are measured, the latter through detailed virial analysis, including a determination of the external pressure on the cores. The book illustrates core stability on the "virial plane", in which core stability is plotted against core confinement mode, showing that starless cores are typically confined by external pressure rather than self-gravity. It also presents an analytical model of the evolution of starless cores in the "virial plane", demonstrating that a pressure-confined starless core may evolve due to virial stability rather than gravitational collapse, which means that a core can only be definitively considered to be prestellar if it is gravitationally bound.
This book provides a compilation of in-depth articles and reviews on key topics within gravitation, cosmology and related issues. It is a celebratory volume dedicated to Prof. Thanu Padmanabhan ("Paddy"), the renowned relativist and cosmologist from IUCAA, India, on the occasion of his 60th birthday. The authors, many of them leaders of their fields, are all colleagues, collaborators and former students of Paddy, who have worked with him over a research career spanning more than four decades. Paddy is a scientist of diverse interests, who attaches great importance to teaching. With this in mind, the aim of this compilation is to provide an accessible pedagogic introduction to, and overview of, various important topics in cosmology, gravitation and astrophysics. As such it will be an invaluable resource for scientists, graduate students and also advanced undergraduates seeking to broaden their horizons.
This book comprises a fascinating collection of contributions on the Merz telescopes in Italy that collectively offer the first survey on historical large refracting telescopes in the country, drawing on original documents and photographs. It opens with a general introduction on the importance of Merz telescopes in the history of astronomy and analyses of the local and international contexts in which the telescopes were made. After examination of an example of the interaction between the maker and the astronomer in the construction and maintenance of these refractors, the history of the Merz telescopes at the main Italian observatories in the nineteenth century is described in detail. Expert testimony is also provided on how these telescopes were successfully used until the second half of the twentieth century for research purposes, thus proving their excellent optical qualities.
These are the proceedings of a meeting in honour of Massimo Capaccioli at the occasion of his 70th birthday. The conference aimed at summarizing the results from the main current and past digital sky survey projects and at discussing how these can be used to inspire ongoing projects and better plan the future ones. Over the last decades, digital sky surveys performed with dedicated telescopes and finely-tuned wide-field cameras, have revolutionized astronomy. They have become the main tool to investigate the nearby and far away universe, thus providing new insights in the understanding of the galaxy structure and assembly across time, the dark components of the universe, as well as the history of our own galaxy. They have also opened the time domain leading to a new understanding of the transient phenomena in the universe. By providing public access to top quality data, digital surveys have also changed the everyday practice of astronomers who have become less dependent on direct access to large observing facilities. The full scientific exploitation of these surveys has also triggered significant advances in both space and ground based technology and in the field of multi-object spectroscopy. The various sections of this book are devoted to different relevant aspects of astrophysics in the era of digital sky surveys and include both review and shorter, more focused contributions.
This book's interdisciplinary scope aims at bridging various communities: 1) cosmochemists, who study meteoritic samples from our own solar system, 2) (sub-) millimetre astronomers, who measure the distribution of dust and gas of star-forming regions and planet-forming discs, 3) disc modellers, who describe the complex photo-chemical structure of parametric discs to fit these to observation, 4) computational astrophysicists, who attempt to decipher the dynamical structure of magnetised gaseous discs, and the effects the resulting internal structure has on the aerodynamic re-distribution of embedded solids, 5) theoreticians in planet formation theory, who aim to piece it all together eventually arriving at a coherent holistic picture of the architectures of planetary systems discovered by 6) the exoplanet observers, who provide us with unprecedented samples of exoplanet worlds. Combining these diverse fields the book sheds light onto the riddles that research on planet formation is currently confronted with, and paves the way for a comprehensive understanding of the formation, evolution, and dynamics of young solar systems. The chapters 'Chondrules - Ubiquitous Chondritic Solids Tracking the Evolution of the Solar Protoplanetary Disk', 'Dust Coagulation with Porosity Evolution' and 'The Emerging Paradigm of Pebble Accretion' are published open access under a CC BY 4.0 license via link.springer.com.
This thesis develops new and powerful methods for identifying planetary signals in the presence of "noise" generated by stellar activity, and explores the physical origin of stellar intrinsic variability, using unique observations of the Sun seen as a star. In particular, it establishes that the intrinsic stellar radial-velocity variations mainly arise from suppression of photospheric convection by magnetic fields. With the advent of powerful telescopes and instruments we are now on the verge of discovering real Earth twins in orbit around other stars. The intrinsic variability of the host stars themselves, however, currently remains the main obstacle to determining the masses of such small planets. The methods developed here combine Gaussian-process regression for modeling the correlated signals arising from evolving active regions on a rotating star, and Bayesian model selection methods for distinguishing genuine planetary signals from false positives produced by stellar magnetic activity. The findings of this thesis represent a significant step towards determining the masses of potentially habitable planets orbiting Sun-like stars. |
![]() ![]() You may like...
Successfully Implementing Microsoft…
Reinder Koop, Ester Muris
Hardcover
R1,535
Discovery Miles 15 350
Insightful Data Visualization with SAS…
Falko Schulz, Travis Murphy
Hardcover
R1,239
Discovery Miles 12 390
|